The Online Journal of Space Communication Issue No. 16 on Solar Power Satellites continues to obtain submissions, including a paper on Solar Power Satellite Research in China. Excerpts are below.
Abstract. In its long-term vision, the responsibility for ensuring China’s food safety for its huge population, meeting its international obligations for environmental protection and providing the structure for its energy needs have determined that the direction of future development of low-carbon energy sources cannot be to sacrifice the “inner” earth. Thus, the state has decided that power coming from outside of the earth, such as solar power and development of other space energy resources, is to be China’s future direction. Space based solar power (SBSP), and the development of solar power satellites (SPS) to facilitate renewable energy production, is one of the “outside” approaches currently under development in China. Based on China’s future vision for energy development, this paper will present why SPS development is important for China. A brief introduction to China’s SPS project is given.
SPS Research in China. China’s first SPS research started in the late 20th century. In the new millennium, when the energy issue became a constraint on sustainable development in China, the China Academy of Space Technology submitted to the government a “Necessity and Feasibility Study Report of SPS.” Later, an SPS concept design was activated, approved and funded by the Ministry of Industry and Information Technology (MIIT). CAST’s present SPS system oriented study is the first to address its key components, and to define a baseline or reference system that will allow a relatively accurate determination of mass and cost in China.
Based on China’s SPS scenario, there are 5 steps to achieving the first commercial SPS system. In 2010, CAST will finish the concept design; in 2020, we will finish the industrial level testing of in-orbit construction and wireless transmissions. In 2025, we will complete the first 100kW SPS demonstration at LEO; and in 2035, the 100mW SPS will have electric generating capacity. Finally in 2050, the first commercial level SPS system will be in operation at GEO.