
NAUTILUS - X

Multi-Mission Space Exploration Vehicle

Mark.L.Holderman@nasa.gov

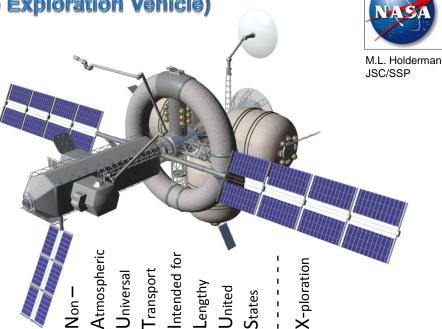
FISO Telecon 1/26/2011

Non –

MMSEV (Multi-Mission Space Exploration Vehicle)

Technology Applications Assessment Team

Description and Objectives:


- Long-duration space journey vehicle for crew of 6 for periods of 1 -24 months
 - CIS-lunar would be initial Ops Zone [shakedown phase]
- Exo-atmospheric, Space-only vehicle
- Integrated Centrifuge for Crew Health
- ECLSS in deployed Large Volume w/ shirt-sleeve servicing
- Truss & Stringer thrust-load distribution concept (non-orthogird)
- Capable of utilizing variety of Mission-Specific Propulsion Units [integrated in LEO, semi-autonomously]
- Utilizes Inflatable & Deployed structures
- Incorporates Industrial Airlock for construction/maintenance
 - Integrated RMS
- Supports Crewed Celestial-body Descent/Return Exploration vehicle(s)
- Utilizes Orion/Commercial vehicles for crew rotation & Earth return from LEO

Approach:

- Multiple HLV (2-3) & Commercial ELV launches
- On-orbit LEO Integration/Construction
- First HLV payload provides Operational, self-supporting Core
- Centrifuge utilizes both inflatable & deployed structures
- Aero Braking deployed from Propulsion Integration Platform

Collaborators/Roles:

- JPL:Deployment Integ., Communications/Data Transmission
- AMES: ECLSS, Bio-Hab
- GSFC: GN&C, Independent System Integrator
- GRC: PowerPumps, PMD, External Ring-flywheel
- LaRC: Hoberman deployed structures & Trusses
- MSFC: Propulsion Unit(s) & Integration platform , Fluids Transfer & Mngt.
- JSC: Proj. Mngt SE&I, ECLSS, Centrifuge, Structures, Avionics, GN&C, Software, Logistics Modules
- NASA HQTRS: Legislative & International Lead

Justification:

- Provides Order-of-Magnitude increase in long duration journey capability for sizeable Human Crews
 - Exploration & Discovery
 - Science Packages
- Supports HEDS 2.2.4.2 Habitat Evolution technology development
- Meets the requirement of Sec. 303 MULTIPURPOSE CREW VEHICLE <u>Title III Expansion of Human Space Flight Beyond the International</u> <u>Space Station and Low-Earth Orbit</u>, of the "National Aeronautics and Space Administration Authorization Act of 2010"

COST: \$ 3.7 B DCT & Implementation 64 months

Multi-Mission Space Exploration Vehicle

Technology Applications Assessment Team

System Goals

- •Fully exo-atmospheric/Space-only
 - No entry capability through Earth's Atmosphere
- Accommodate & Support Crew of 6
- Self-sustaining for months (1-24) of Operation
- Ability to Dock, Berth and/or Interface with ISS & Orion
- Self-reliant Space-Journey capability
- On-orbit semi-autonomous integration of a variety of Mission-specific Propulsion-Units

Attributes

Multi-Mission Space Exploration Vehicle

- Large volume for logistical stores
 - FOOD
 - Medical
 - Parts
 - Other
- Provide Artificial Gravity/ Partial(g) for Crew Health & GN&C
- Provide real-time "true" visual Command & Observe capability for Crew
- Capability to mitigate Space Radiation environment
- Ability to semi-autonomously integrate Mission Specific Propulsion-Pods
- Docking capability with CEV/Orion/EAT(European Auto Transfer)/Other
- Robust ECLS System
 - IVA based for service/maintenance

Multi-Mission Space Exploration Vehicle

NAUTILUS - X

Technology Applications Assessment Team

Attributes

•Robust Communications Suite

- Designed for wide array of Thrust/Isp input(s)
 - Ion-class
 - Low level, Long Duration chemical
- Self powered
 - PV array
 - Solar Dynamic
- Industrial sized Airlock supports MMU[Manned Maneuvering Unit]
 - Logistical Point-of-Entry
 - Intermediate staging point for EVA
- External scientific payloads
 - Pre-configured support points
 - Power, Temp, Data, Command & Control

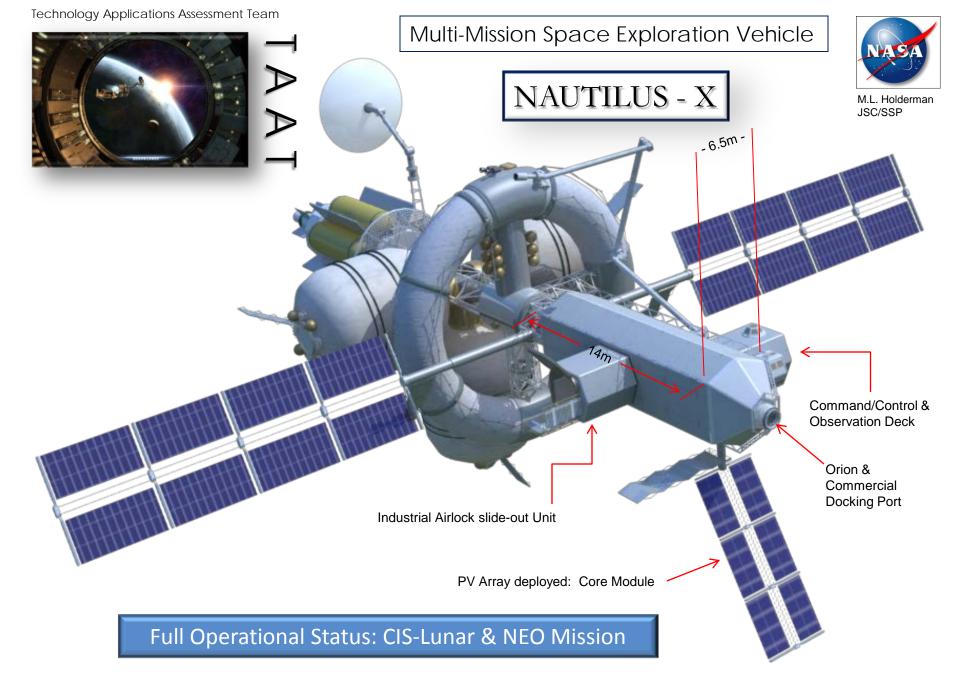
Technology Development

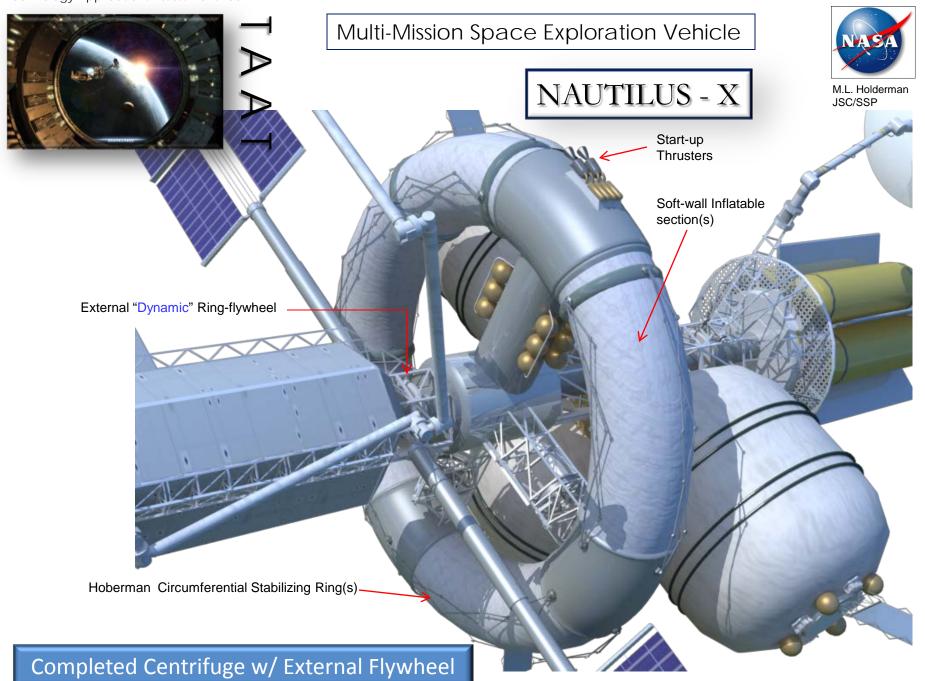
Multi-Mission Space Exploration Vehicle

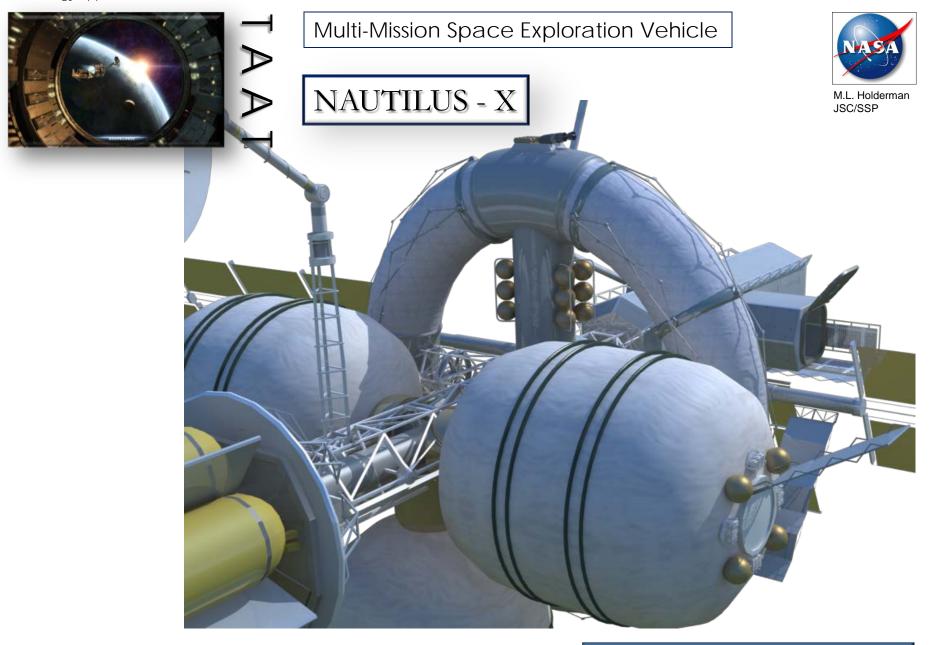
- Autonomous Rendezvous & Integration of LARGE structures
- Artificial Gravity/Partial-(g)
 - Basic design
 - System Integration and GN&C Impacts & Assessments
 - Materials
 - Hub design
 - Seals
 - Carriage Design
 - Bearings
 - Power transfer mechanisms
 - Flywheel torque-offset
 - External dynamic Ring-flywheel
 - CMG cluster(s)
- Semi-autonomous Integration of MULTIPLE Propulsion Units
 - Mission **SPECIFIC**
- Next generation MMU [old free-flyer MMMSS]
- Inflatable and/or Deployable module/structure design(s) • Transhab & Hoberman

Technology Development

Multi-Mission Space Exploration Vehicle




M.L. Holderman JSC/SSP


•High-gain/High-power Communications

- Radiation mitigation
 - Structural Integrated
 - Magnetic Field strategy (MIT)
 - Individual application augmentation
 - Suits & Pods
 - Safe-Zone [H20/H2-slush strategy]
- Thrust structure integration through-out vehicle and across orbital assembly interfaces

 Deployable exo-truss
- O-(g) & Partial-(g) hydroponics/agriculture
- ECLSS { IVA Maintenance, R&R }
 - Active membranes
 - Revitalization methodologies
 - Atmosphere Circulation
 - Temperature control
 - Humidity control

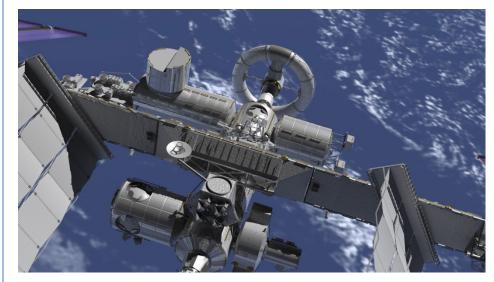
View looking "Forward"

ISS Centrifuge Demo*

Mark L. Holderman JSC/SSP

Description and Objectives:

- Utilize Hoberman-Sphere expandable structures with inflatable & expandable technology Soft-structures to erect a (low mass) structure that provides partial-(g) force for engineering evaluation
- First In-space demonstration of sufficient scale Centrifuge for testing and determination of artificial partial-(g) affects
- Impart Zero disturbance to ISS micro-gravity environment
- Potentially Off-load duty-cycle on ISS CMGs by introducing constant angular moment to augment GN&C
- (*) Ultimately provide partial-(g) sleep station for ISS Crew
 - Option for Food-prep station & small Dining area
 - Potential partial-(g) WC


Approach:

- Existing Orbiter External Airlock used to attach Centrifuge to ISS Also provides a contingency AirLock capability
- •Hub design based on Hughes 376 Spin-Sat Tech.
 - Liquid metal & tensioned material seal design
 - Low noise/mass thrust and guide bearings
- Self deployment with IVA for final construction/verification
- Engineering pedigree with TransHab and EVA suits • Two individual ½ Circle deployments
- Hoberman based load & deployment ring
- Goal: single Delta-IV/Atlas-V launch

Collaborators/Roles:

JSC: Design Requirements/Project Mngt., Centrifuge Design/Test, Instrumentation, Control Avionics/SW, Deployment scheme, Draper Labs: ISS GN&C impacts Structural Design & Materials selection, Crew Training, On-Orbit Test OPS

JSC/Ames: Hub Seal & Bearings, **Payload Integration** GRC: Flywheel Design/Integr. LaRC: Hoberman alignment & load Cirlce

Justification:

- Partial Gravity in space may be critical for enabling Long Term Human exploration within the Solar System
- A Centrifuge must be integrated into the baseline design of any transit or Journey-class spacecraft in order to take advantage of GN&C influences and specific design considerations
 - Rotating hub/ transition tunnel
 - Rotating mass with & w/o Crew present
- Early experience on ISS is critical to assessing and characterizing influences and affects of a Centrifuge relative to

- Dynamic response & Influences - Human reaction(s) data-base

<39 months \$84-143M DDT&E/DCT&I

Development Challenges

Multi-Mission Space Exploration Vehicle

- Potential parallel development with HLV
 Resource allocation
- HLV Payload integration
 - Ascent Vibro-Accoustic P/L environment(s)
 - Mass growth
 - Battery performance
- Centrifuge Hub
 - Torque off-set S/W & external ring flywheel
 - GN&C impacts [modeling]
 - Slip-rings
 - Drive Mechanism
 - Seals
 - Carrier design
- Centrifuge Design
 - Materials
 - Deployment mechanism(s): Inflatable Section(s)
 - Stiffening/Load Structure: Hoberman
- Propulsion Pod Integration Platform
 - Capture & Latch mechanisms
 - Data/Telemetry/Command & Control strings

•Exo-Thrust-structure

Structural On-orbit Assembly Interface(s)

Partnering & Collaboration

Multi-Mission Space Exploration Vehicle

- JPL: Deployment Integ., Communications/Data Transmission
- AMES: ECLSS, Bio-Hab
- GSFC: GN&C, Independent System Integrator
- GRC: Power, Fluid Pumps, PMD, External Ring-flywheel
- LaRC: Hoberman : Deployed structures & Trusses
- NESC: "Shadow" Systems Integrator
- MSFC: Propulsion Unit(s) & Integration platform , Fluids-Transfer & Mngt.
- JSC: Proj. Mngt SE&I , ECLSS, Centrifuge, Core-Structures, Avionics, GN&C, Software, Logistics Modules
- NASA HQTRS: Legislative & International Relations
- Academia: MIT, Cal-TECH/JPL, Stanford
- CIA/NRO/DoD: National Security
- National Institute of Health
- Large-Project, Traditionally NON-Aerospace, Program Developers
 - Power
 - Shipping
 - Infrastructure

[A A]

Technology Applications Assessment Team

Technology Development

First TAAT Demonstration

Multi-Mission Space Exploration Vehicle

NAUTILUS - X

- <u>CENTRIFUGE [HABITABLE] ARTIFICIAL GRAVITY/PARTIAL-(g)</u>
 - Basic design
 - System Integration Impacts & Assessments
 - Materials & Deployment strategy
 - UV, Radiation-mitigation, Self-sealing, Micro-meteoroid defense
 - Inflatable and Expandable Structure integrated design
 - Hub design
 - Seals
 - Bearings
 - Materials
 - Power transfer mechanisms
 - Centrifuge torque-offset
 - External dynamic Ring-flywheel
 - CMG cluster(s) integration
 - Control Avionics & Software
 - Full-Test & Assay of HUMAN response to Partial-(g)

Multi-Mission Space Exploration Vehicle

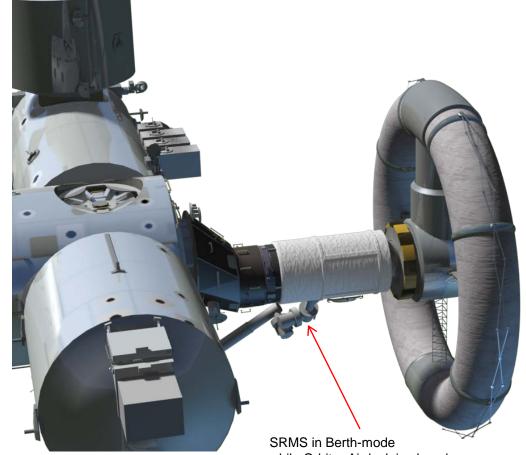
Technology Applications Assessment Team

2011-2013 DEMO COST: \$84M - \$143M

- Inflatable Based (TransHab)
- Hoberman Ring Stabilized
- External Ring-flywheel
- ISS micro-(g) experiment compatible

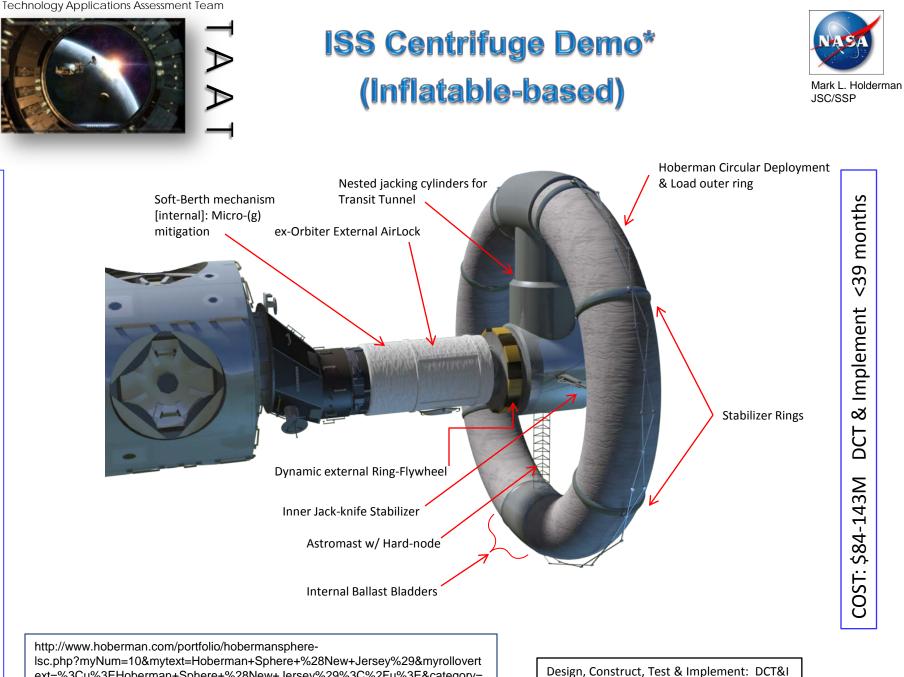
ISS Centrifuge Demo

DEMO Aspects:


- 30ft OD with 50in. cross-section ID
 - All internal dimensions and layout will accommodate EVA suite Astronaut
- Max RPM for Centrifuge may require longer acclimation period for crew between partial and zero-(g)

	Partial	- (g)
RPM	30ft dia.	40ft dia.
4	.08	.11
5	.13	.17
6	.18	.25
7	.25	.33
8	.33	.44
9	.41	.55
10	.51	. 69

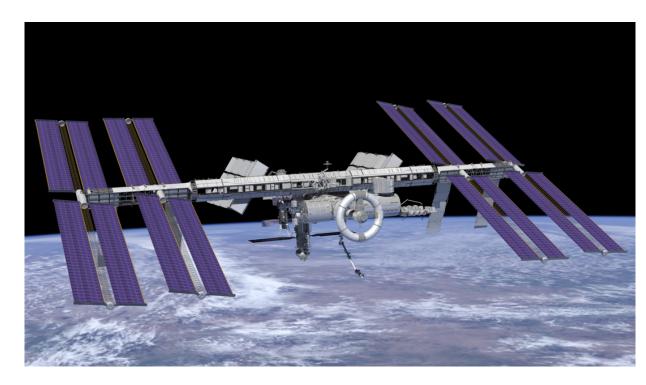
- Well-modeled & Assessed /Analyzed "net" influence on ISS CMGs and GN&C
 - Loads not to exceed Dock-port limits
- Smaller diameter Centrifuge incorporates shaped inflatable elements that are deployed from fixed hard nodes
- Hub design utilizes Liquid-metal seals with low-rumble/wobble thrust bearings
- Bearing rotational hardware derived from Hughes 376 spin-stabilized ComSats


ISS Centrifuge Demo (Inflatable-based)

while Orbiter Air-lock is placed in Soft-Dock during micro-(g) activities on ISS

&projectname=Hoberman+Sphere+%28New+Jersey%29

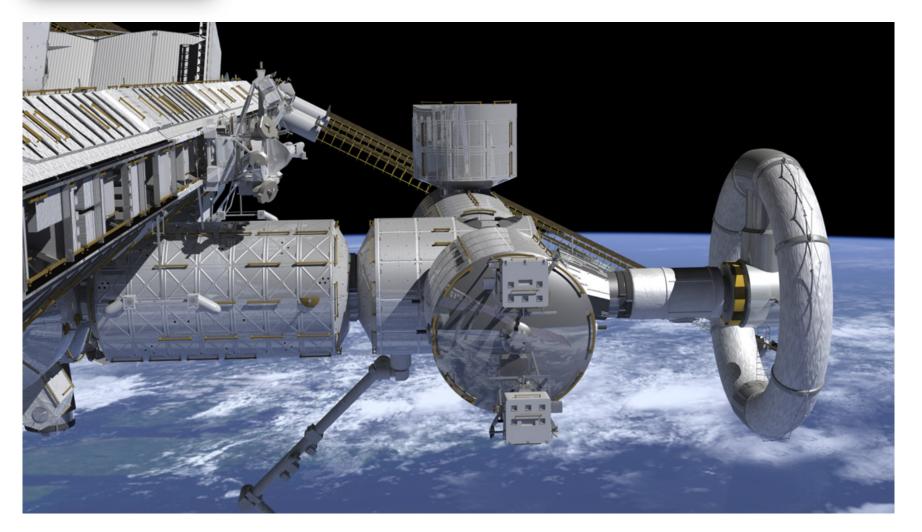
ext=%3Cu%3EHoberman+Sphere+%28New+Jersey%29%3C%2Fu%3E&category=



DEMO Aspects:

- Kick motor utilized as both primary start-up and spin maintenance mechanism
- Drive motor(s) will be in ISS/Orbiter External Airlock
- Centrifuge can also serve as independent **Emergency Shelter node**
 - Independent internal separation capability from ISS for major contingency situation
- Engineering pedigree with TransHab and EVA suit material(s) & design principles
 - Two individual 1/2 Circle deployments
- Nested cylinder & deployable drawer approach for Transit Tunnel
- Ring Flywheel can be either driven from ex-Orbiter External Airlock or be self-contained on Hub [requires Hub battery-bank]
- CG offset of Centrifuge centerline mitigated with internal ballast bladders [urine/waste fluids]

ISS Centrifuge Demo* (Inflatable-based)


* Test & Evaluation Centrifuge designed with capability to become Sleep Module for Crew

ISS Centrifuge Demo

- Inflatable Based (TransHab)
- Hoberman Ring Stabilized
- External Ring-flywheel
- ISS micro-(g) experiment compatible

ISS Centrifuge Demo Activities: Representative Involvement - JSC

•Thermal-Vac chamber would be fully utilized testing proto-type configurations and large-scale operating models of the Centrifuge [CF]

Bearing and hub designSeal design

•Inflatable/Hoberman deployment testing with mag-lev plates for 0-g simulation

• Bldg.9 would be converted to Full-scale CF lay-out with multiple mock-ups

Air-table for deployment/assembly checkout of CF assembly sequence
Human factor assessment
ECLSS integration
GN&C affects on thrust & control axis'

Mission Operations Directorate

- · Emphasis focuses on start-up sequence of CF
- Nominal operational influences of CF

<u>Space & Life-Sci [Dedicated Project]</u>

- •Partial-(g) / Fractional-(g) effects on the human body
 - •Repetitious exposure to partial-g and zero-g
 - Psyche/mood effects
 - Vascular
 - •Digestive [tendency to vomit during transition]
 - Excretory
 - Ocular
 - •Skeletal/Muscular
 - Sleep

•Sleep chamber coupled to Radiation mitigation

•Design of Partial-g toilet and body-wash-station

•ECLSS design for IVA [Internal Vehicular Activity]maintenance & repair

ISS Centrifuge Demo & JSC Envolvement

- Engineering Directorate undertakes Exo(skeleton)-Truss design
 - Load distribution
 - •Deployment scheme(s)
 - •Thermal management techniques
 - •Load transmitting Orbital structural interface design

• Engineering Directorate undertakes Flat-Panel Spacecraft design

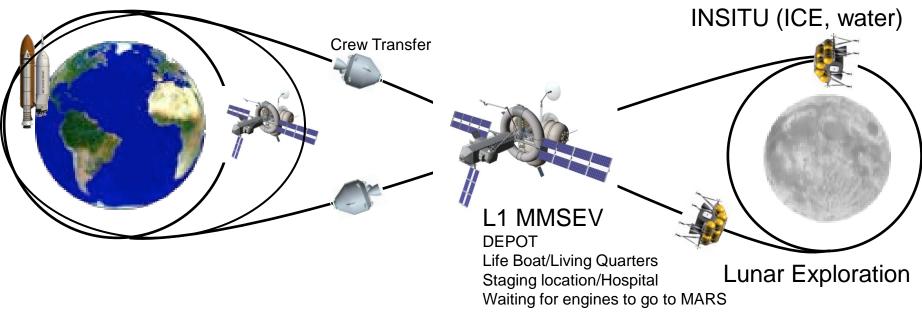
Partial ortho-grid/iso-grid utilization
Integration of external/internal Exo-Truss
Engineering Directorate undertakes pre-configured Drawer-extension deployment strategy
Track design for Slide-out deployment
Seal & autonomous latch design [internal & external]
Load accommodation
Thermal management
Electrical/Comm/Data/ECLSS integration

•Engineering Directorate undertakes material development for Inflatable Elements of CF

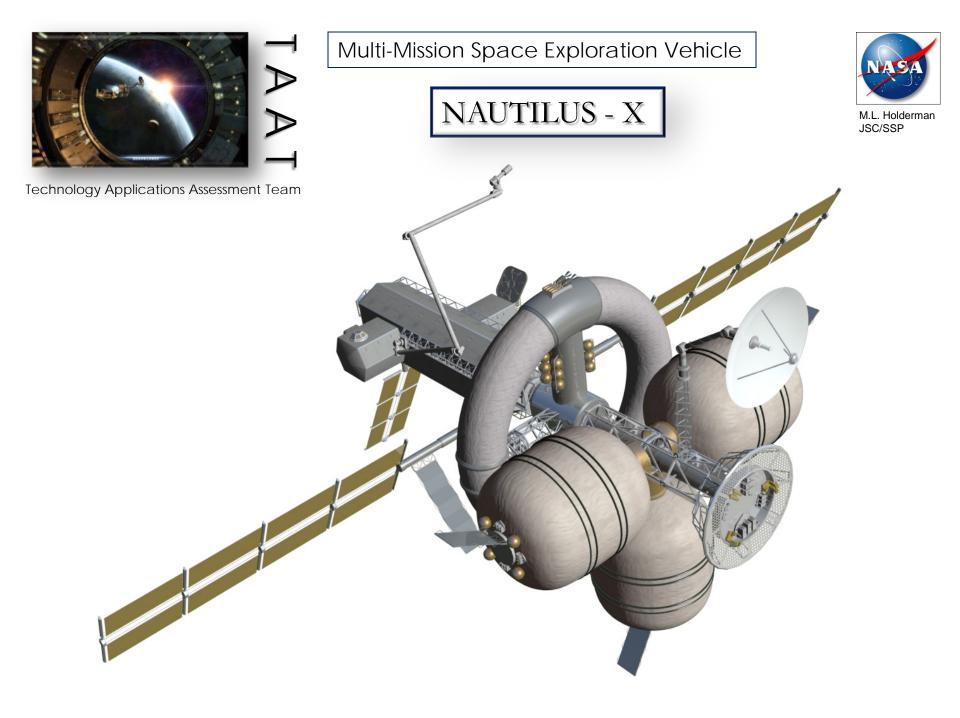
- •Engineering Directorate undertakes CF rotating hub design
- Engineering Directorate begins second-generation closed-loop ECLSS design
- •Engineering Directorate undertakes Guidance & Control design of Nautilus-X
 - •Accommodation of Multiple Propulsion Pods
 - Thrust models with operating CF
 - •Software development
 - •Star map generation for multiple MMSEV Missions
- •Engineering Directorate undertakes Long-Distance Communications/Data suite design
 - •Radar and Communications range re-activated/expanded
 - •Vibro-Accoustic Lab addresses Propulsion Pod impacts on link stability & integrity

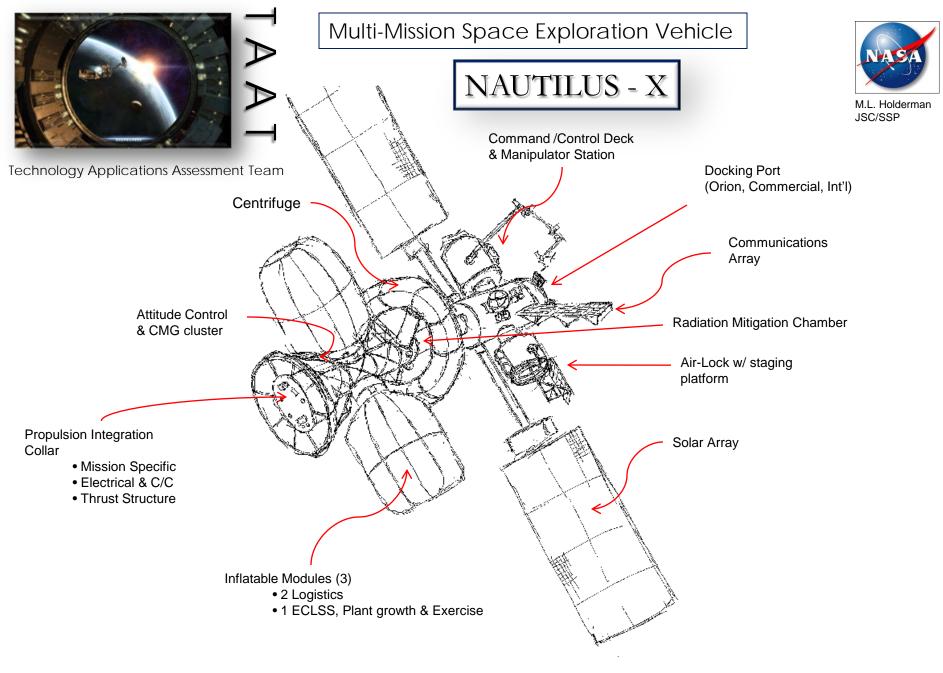
Back-Up Charts

Multi-Mission Space Exploration Vehicle

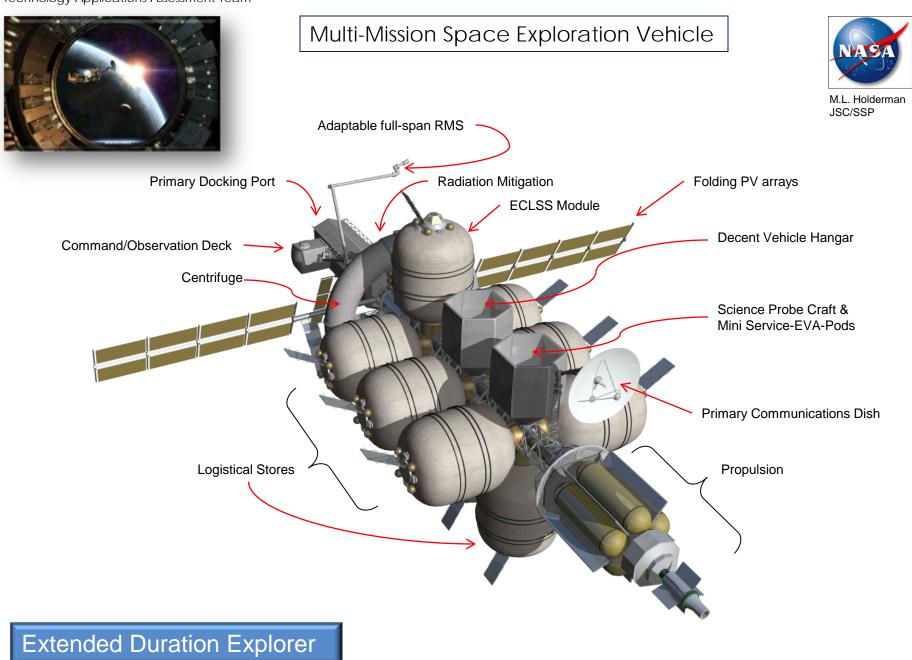

NAUTILUS - X

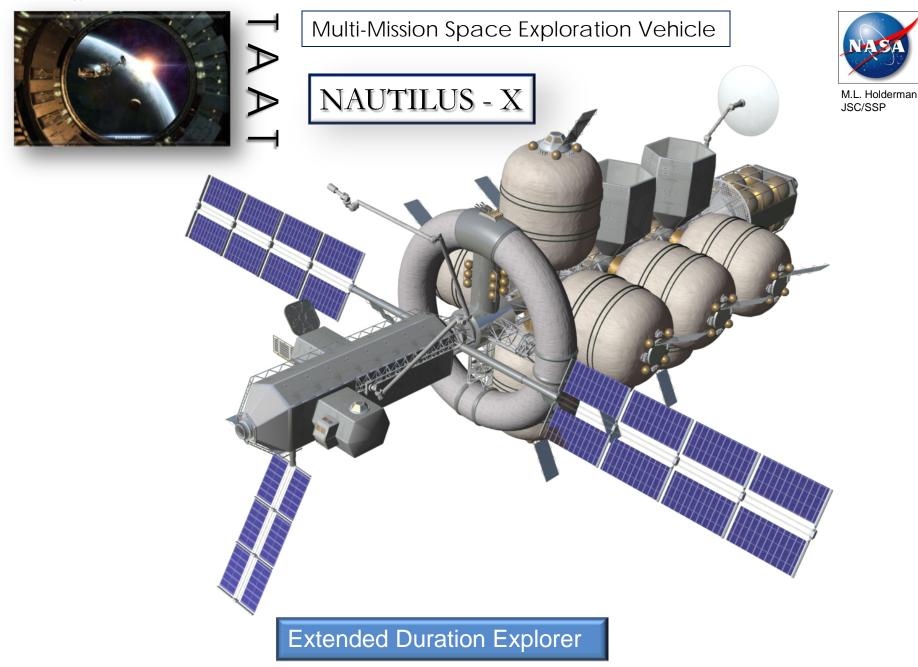
Initial Operation(s) Concept




M.L. Holderman JSC/SSP

Solar Electric Propulsion Spin out





Reinzow

