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Abstract

Free-floating space habitats can rotate to produce artificial gravity. Structural
matter supports the habitat against the resulting centrifugal forces and air pressure.
Expanding from a previous work on the energy flow, a physical model is developed
to compute the structural mass for habitats of various sizes and shapes, taking
into account self-weight in horizontal and vertical support (and bridges between
vertical cables). Lower limits on the habitat size are given by the acceptable rotation
rate (demanding high rotational radius) and relative shielding mass (demanding
high volume-to-surface ratio). Upper limits are posed by co-rotation of the energy
collection system (for light and electricity), by the acceptable structural mass, and
by the distribution of coolant and light. At small sizes, the dumbbell shape is
preferred due to its compactness and adjustable rotational radius. Cylinder and
(oblate) spheroid are better for very large habitats due to their lower structural
mass, with torus and tube in between. Assuming default parameters (1600m3 of
interior volume, 40kW of power, and 100 tons of interior mass per person, shielding
of 5 tons per m2, ratio of tensile stress to density of 105 Nm

kg ), shielding dominates
the mass budget below a population of some 10,000. Co-rotation of the energy
collection system is feasible for cylinders with populations up to 200,000 and for
dumbbells up to a few million. The minimum total mass per person is achieved in a
sphere of 6 million inhabitants, where structural and cooling mass are each 10 tons
per person and shielding is 20. Both cooling and structural integrity require ever
more mass per person for larger habitats (but even a billion seems possible).

1 Introduction

The settlement of space is an endeavor yet to be undertaken by humanity. While often
focused on other planets, free-floating space habitats offer far more diversity, proximity,
and growth potential [7]. They utilize the abundant solar power to sustain ecosystems
as well as the technical energy demand, and can mainly consist of processed asteroid
matter. A shielded hull protects against radiation, rotation provides artificial gravity
[5], sunlight can be channeled to the interior by mirrors, and circulation of a coolant to
external radiators maintains pleasant temperatures. Small habitats might not need the
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latter two if a transparent hull suffices for lighting and cooling. Gravity is lower closer
to the rotational axis, but that offers far more diverse settings than the single value on
Earth.

Early design studies of such habitats were done by O’Neill and others in the 1970s
[9, 6]. High launch costs have since prevented their realization, but it has also been
proposed to start with much smaller and lighter habitats in low Earth orbit [2]. With
ongoing launch cost reductions and increasing help from artificial intelligence, the first
small habitats in Earth orbit could be built soon [11, 8].

This article investigates the structural mass to support against artificial gravity for
various habitat shapes, and expands a previous work on the energy flow [10]. The python
implementation is publicly available on github
(https://github.com/RainerRolffs/SpaceHabitats).

Sec. 2 describes the structural model, which is used to compare different designs in
Sec. 3. The equations are derived in the appendix (Secs. A for geometry, B for gravity,
and C for the structural mass).

2 Model Description

The model expands the computations of [10]. Table 1 summarizes the additional input
parameters and their default values.

2.1 Habitat

The size of the model is scaled under the assumption of constant usage of the precious
shielded interior volume (by division into floors), thus constant population and power
(light and electricity) per volume. Population is chosen as the size input parameter due
to its intuitive meaning (it can be below 1 for non-human occupation). The volume is
given by volume per person, the power consumption by power per person, and the interior
mass by interior mass per person. These parameters replace habitat power, power per
volume, and interior mass per power from [10]. The equivalent defaults are a population
range of 0.025 - 2.5 × 1013 (500 sizes logarithmically spaced), with 1600m3, 40kW and
100t per person.

2.2 Geometry

Fig. 1 shows a sketch of the shapes that are considered in this work. Energy is collected
in the plane facing the Sun, heat is emitted perpendicular to it, facing cold space. The
rotation axis is kept along the direction to the Sun, so these orientations do not change.
The geometric shapes are parameterized by the ratios of a characteristic length to the
rotational radius, the largest axial distance inside the hull. The following shape types are
considered:

� Cylinder: The cylinder rotates around its central axis. Its length defaults to 1.3
times the radius to maintain rotational stability.
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Table 1: Input parameters in addition to [10]

Description Appendix
Symbol

Program Variable Unit Default Value

Habitat
population of the habitat p population (persons) 2.5 × (10−2 -

1013)
interior volume per person νV volumePerPerson m3 1600
habitat power per person νP powerPerPerson W 4× 104

interior mass per person νI interiorMassPerPerson kg 105

Geometry
shape type shapeType Cylinder,

Tube,
Oblate,
Torus,
Dumbbell,
Dumbbell-
Tube

Cylinder

ratio of cylinder length to rotational radius ξcyl cylinderLengthToRotRadius 1.3
ratio of tube radius to rotational radius ξT tubeRadiusToRotRadius 0.1
ratio of oblate minor radius to rotational radius ξobl oblateMinorToRotRadius 1
ratio of torus habitat radius to rotational radius ξtorus torusHabToRotRadius 0.25
ratio of dumbbell minor radius to rotational radius ξdb dumbbellMinorToRotRadius 0.1
ratio of major to minor dumbbell habitat radii ν dumbbellMajorToMinorRadius 1
Gravity Distribution
constant part of floor height hconst constantFloorHeight m 5
minimum of variable part of floor height hvar,min variableFloorHeight m 5
Structural Integrity

tensile stress per density Σ stressPerDensity Nm
kg

105

air pressure (already included in the original model for heat
absorption by air flow)

pA airPressure bar 0.4

maximum gravity gmax maxGravity m
s2

9.81

average distance between vertical cables dV distanceBetweenVerticalCables m 10
thickness of bridges b bridgeThickness m 1
Energy Collection
maximum ratio of co-rotating light and electricity radius to
co-rotational radius

γL,E maxCollectionToCoRotRadius 1

Heat Emission
maximum ratio of radiator to co-rotational radius γem maxRadiatorToCoRotRadius 1

� Tube: The tube is a cylinder that rotates perpendicular to its length. The endcaps
are rounded for a common maximum gravity. The default tube radius to rotational
radius is 0.1.

� Oblate: Diminishing a sphere’s radius along the rotational axis results in an oblate
spheroid. The ratio of minor to major radius can be specified (default is 1, a sphere).

� Torus: The torus is a ring whose thickness is given by the habitat radius (default
is a quarter of the rotational radius).

� Dumbbell: Two spheres rotate around their center of mass, connected by cables.
An asymmetric dumbbell has spheres of different radii, whose ratio can be specified
(default is 1, symmetric). The (minor) habitat radius defaults to 0.1 times the
rotational radius.

� Dumbbell with Tube: In this case, the spheres are connected by a shielded and
pressurized tube (of given radius ratio), instead of merely elevator and cables.
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Figure 1: Sketches of the habitat shapes. The upper panels show the view along the axis (red),
the lower panels perpendicular to it (tube and dumbbell are seen from the side, while the other
shapes are rotationally symmetric). With the axis permanently pointing to the Sun, mirrors
and PV panels would extend in the upper panels, the radiator in the lower panels (not shown).
The aspect ratios (fractions of rotational radius RR) are (a) ξcyl = 1.3, (b) ξT = 1

2 , (c) ξobl =
1
2 ,

(d) ξtorus =
1
4 , and (e) ξdb = 1

4 and sphere radii ratio of 3
√
2 (the second sphere has twice the

volume).

2.3 Gravity Distribution

The interior volume is divided into floors (either separated or a continuous spiral, con-
nected by elevators and stairs). The floor heights may vary with gravity - this is modeled
as a constant component plus a height that is inversely proportional to gravity. Both
constant and minimum variable part default to 5m, so the outermost floor is 10m high,
while at half the rotational radius the height is 15m.

2.4 Structural Integrity

Structural material is characterized by the ratio of tensile stress to density Σ, where stress
is the force that acts on it per cross section. It should be considerably lower than the
tensile strength where the material breaks. For example, a tensile stress of a few times
108 N

m2 applied to a mix of materials whose average density is a few times 103 kg
m3 results

in the default value of 105 J
kg
. Steel can hardly reach this default, but lighter temporary

materials can surpass it by an order of magnitude (and carbon nanostructures by more
than two orders).

In addition to artificial gravity, pressure containment also needs structural mass (pro-
portional to the air mass). The input parameter for air pressure is already included in
the original model (where it is used for heat absorption by air flow).

The maximum gravity gmax defaults to Earth normal gravity.
Support against gravity is provided either as radial cables (vertically supporting hang-

ing masses) or integrated in hull and ground (horizontally supporting standing masses).
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Figure 2: Structural mass per supported mass as function of radius. Horizontal support has
more self-weight than vertical support, limiting it to radii below the critical co-rotational radius
RCoRot, which grows with the square root of the rotational radius RR. For default parameters
and a rotational radius of 100m, RCoRot is 1km. It meets the rotational radius at 10km. For
clarity, bridges are exaggerated by setting the distance between the vertical cables to 50m (the
default of 10m is close to the pure vertical).

Vertical support has less self-weight (Sec. C), but bridge-like horizontal structures are
needed between the vertical cables. The distance they span defaults to 10m, the bridge
thickness (height of the horizontal structure or the soil) to 1m. The radiator as well as
hull and interior of dumbbell and tube can only be held vertically; else the method with
the lower mass is chosen for each floor.

2.5 Energy Collection / Heat Dissipation

Mirrors and PV are decoupled from rotation at radii above γL,E times the critical co-
rotational radius (Sec. C.6, default 1). Non-rotating mirrors must be cylindrically sym-
metric, PV connected by sliding contacts.

In the model, the whole radiator co-rotates with the habitat. Its extension from the
axis is hence limited to γem times the critical co-rotational radius (default is 1). The length
is increased (and the quadratic radiator shape abandoned) when this limit is reached.

3 Results

Containing the air can require more mass than the air itself - irrespective of the air
pressure and inversely proportional to the stress per density (the default results in 1.6
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Figure 3: Gravity distribution inside different habitat shapes (examples of medium size,
Tab. 3). Each cross represents a floor (connecting lines are only for visual help), indicating
the gravity at its bottom (ground) and the fraction of total ground area. Floor heights vary
with gravity (constant height of 5m plus a variable height of 5m divided by the ratio of gravity
to maximum gravity).

times as much).
The amount of structural mass to counter artificial gravity is proportional to the

supported mass and the square of their velocity, plus self-weight (Sec. C). The cross
section of a cable (in vertical support) falls with distance from the axis, following a
Gaussian shape. The resulting structural mass fraction is shown in Fig. 2.

To compute the total structural mass, the gravity distribution is needed (Sec. B).
Fig. 3 shows the ground gravity level for each floor in different habitat shapes.

Each component of the habitat has its own distribution of gravity and mass, yielding
a specific structural mass. Their dependence on the habitat size can be seen in Fig. 4.
For example, as the hull mass grows with the square of the radius, the structural mass to
hold it grows with the third power of the radius, i.e. the hull structural mass per volume
is constant until self-weight becomes relevant at large sizes.

The amount of structural mass is comparable to the cooling mass (Fig. 5) - both have
low mass below about 10 million inhabitants (1010m3), where they meet the hull mass at
an order of magnitude below the interior mass.
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Figure 4: Structural masses with corresponding supported masses per volume in the default
case. In energy collection, too large ratios are prevented by abandoning co-rotation, in cooling
by limiting the radiator width. Pressure containment does not support against gravity, but
against pressure from air and coolant.
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Figure 5: Mass per volume of the main components in the default case. Both cooling and
structural mass effectively prevent sizes of more than a billion (1012m3).
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Figure 6: 3-d plots of a small tube, a medium asymmetric dumbbell, and a large cylinder
(green: habitat, yellow: mirrors for light collection, blue: PV modules for electricity, gray:
radiators, red: rotation axis, dashed red: critical co-rotational radius)

Table 2: Small habitats for around one hundred people (interior volume of 1.6× 105m3)

Shape Hull Mass Structural Mass Rot. Radius # Floors Avg. Gravity
(×108 kg) (×105kg) (m) (m

s2
)

Cylinder (length to rot.radius 0.5) 1.0 2.9 47 4 3.8*
Tube (tube to rot.radius 0.1) 1.2 8.4 137 10 5.8
Oblate Spheroid (minor to rot.radius 0.25) 1.0 2.7 53 4 3.0*
Torus (hab to rot.radius 0.1) 1.7 14.8 97 2 8.8
Dumbbell (hab to rot.radius 0.2) 0.9 11.4 134 5 7.9
Dumbbell with Tube (tube to rot.radius 0.1) 1.1 8.5 115 8 7.0
Asymmetric Dumbbell (volume ratio 2) 0.9 7.3 117 7 6.2

Notes. * max. gravity reduced by half to keep the rotation rate at about 3rpm

Different shapes of same habitat size are compared in Tables 2, 3, and 4. The size
category S (small, Tab. 2) has a population of 100, M (medium, Tab.3) has 10,000 people,
and L (large, Tab. 4) has a million (for comparison, interior mass amounts to 105kg per
person). Aspect ratios are adapted for low enough rotation rate, requiring a minimum
radius of around 100m to avoid rotation rates above 3rpm at Earth gravity [3]; thus the
maximum gravity of cylinder and oblate spheroid in S is reduced by half. The dumbbell
shape has the lowest mass, while providing high gravity and slow rotation. In M and
L, the spheroid has the lowest mass (but other shapes might be preferred for gravity
distribution). In L, mirrors extend to 4.9km (and PV to 6.1km) from the axis. Only
the dumbbell shapes allow full co-rotation of mirrors, while the cylinder has a critical co-
rotational radius of 2.7km (demanding stationary mirrors in cylindrical symmetry). This
problem is more severe for larger distance from the Sun. Further extending the categories
by a factor of 100, XS for one person suffers from relatively high shielding mass, and
only a dumbbell (or a sphere with a counter-weight) can have gravity. XL for 100 million
seems possible, but is at the limit for structural integrity, cooling and light distribution.

3-d plots of all habitats can be made with the open-source code (examples in Fig. 6).

4 Discussion

Mass can be a proxy for cost, albeit with different weighting for the components. Shielding
in the hull can be made of wastes or raw material, while the other components require
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Table 3: Medium habitats for around ten thousand people (interior volume of 1.6× 107m3)

Shape Hull Mass Structural Mass Rot. Radius # Floors Avg. Gravity
(×109 kg) (×107kg) (m) (m

s2
)

Cylinder (length to rot.radius 1.3) 1.8 4.5 158 11 7.2
Tube (tube to rot.radius 0.5) 1.9 4.9 217 15 6.3
Oblate Spheroid (minor to rot.radius 0.5) 1.6 4.0 197 14 6.3
Torus (hab to rot.radius 0.25) 2.5 7.2 259 12 7.6
Dumbbell (hab to rot.radius 0.25) 1.9 10.5 496 22 7.5
Dumbbell with Tube (tube to rot.radius 0.1) 2.3 9.0 462 30 7.0
Asymmetric Dumbbell (volume ratio 2) 1.9 6.5 434 27 5.9

Table 4: Large habitats for around a million people (1.6× 109m3)

Shape Hull Mass Structural Mass Rot. Radius # Floors Avg. Gravity
(×1010 kg) (×1010kg) (m) (m

s2
)

Cylinder (length to rot.radius 1.3) 3.9 0.8 732 47 7.1
Tube (tube to rot.radius 0.5) 4.0 0.9 1006 64 6.3
Sphere 3.3 0.7 726 46 6.4
Torus (habitat to rot.radius 0.25) 5.3 1.4 1200 52 7.7
Dumbbell (habitat to rot.radius 0.25) 4.2 2.3 2304 99 7.5
Dumbbell with tube (tube to rot.radius 0.1) 4.9 2.0 2144 134 7.1
Asymmetric Dumbbell (volume ratio 2) 4.1 1.3 2012 123 5.8

processing of matter.
Several constraints on the size of a space habitat have been quantified: Lower limits

are given by the acceptable hull mass per interior volume (Fig. 5), and by the acceptable
rotational rate. Both hull mass and rotational rate depend on shape and aspect ratio,
so a compromise must be found between low hull mass (demanding compactness) and
low rotational rate (demanding a large rotational radius). With growing size, the volume
inside a given rotational radius can be filled starting from points (dumbbell), lines (tube,
torus), or a surface (cylinder, oblate spheroid). For the latter, a compact shape (high
aspect ratio) is only feasible for large habitats. The rotational rate would be above 3 rpm
(rotational radius smaller than 100m) at populations below 2600 (volume 4× 106m3) for
cylinder and sphere, below 10 people (2 × 104m3) for a tube with 5m radius, and below
30 people (5 × 104m3) for a torus with 5m radius, while the dumbbell does not have a
minimum size.

The hull mass is above the interior mass below a population of 60,000 (108m3). Less
shielding might suffice in equatorial low-Earth orbit [4]: a tenth of hull surface density
(so half a ton per m2) shifts this limit to 100 people (105m3), the S size, and allows more
elongated shapes. For example, a transparent hull around the small tube could naturally
cool and light the interior (dissipating 160W

m2 of hull surface and retrieving light of 400W
m2

of cross section). The ground could wind like a staircase around a central tower, and an
additional daily rotation around the tube’s central axis would provide a circadian rhythm
(requiring sliding contacts to the PV modules).

Upper limits on the habitat size are given by

� constraints on cooling and lighting: As derived in [10], cooling mass surpasses
the interior mass at around 1013W (6 × 1011m3, 400 million inhabitants), which
happens to be the same size where lighting would take up too much volume for
distribution in light channels. A mass reduction in cooling by an order of magnitude
is reached by vapor or air instead of liquid, but these cooling methods are limited
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to below 200 million people (3× 1011m3).

� by the requirement of co-rotating mirrors: Mirrors for focusing sunlight onto
habitat windows could be non-rotating, but this allows less concentration and re-
quires window rings on cylindrically symmetric shapes such as torus, cylinder, or
oblate spheroid. Alternatively, light could be produced electrically. While electric
generation can co-rotate below 100,000 inhabitants, the radius of light collection
surpasses the critical co-rotational radius at 180,000 inhabitants (3 × 108m3 and
7 × 109W) for default parameters. This limit is stretched to 4 million (6 × 109m3)
for a dumbbell, but shifts to 26,000 (4 × 107m3) if the cylinder is placed at 2AU
from the Sun. 10 times higher tensile strength per density (Σ = 106m

2

s2
) leads to 6

million (1010m3 and 2 × 1011W). This size is very similar to the spot of minimum
mass, where both hull and cooling masses are relatively low.

� by the acceptable structural mass: For small habitats, the structural mass
to support the hull is similar to the pressure containment - almost proportional
to size at 2% of the interior mass for default parameters, as the increasing radius
is compensated by the decreasing hull mass per volume (Fig. 4). Support for the
interior dominates the structural mass above a population of 100,000 and it surpasses
the hull mass at 16 millions. At 3 billions, the rotational radius reaches its co-
rotational limit of 10km, and the structural mass reaches the interior mass.

5 Conclusions

To compute the structural mass of rotating space habitats, self-weight in horizontal (stand-
ing) and vertical (hanging) support is considered. A critical co-rotational radius is derived,
beyond which horizontal support is impossible (and vertical support requires a structural
mass of 1.4 times the supported mass).

Different habitat shapes are modeled, from (asymmetric) dumbbell over tube and torus
to cylinder and oblate spheroid. Scaled by interior volume, they differ in hull surface area,
gravity distribution, and rotational radius (where maximum gravity is reached).

As shielding dominates the mass budget of small habitats, a minimum habitat size de-
pends on the shielding surface density and the acceptable hull mass. A further constraint
arises from a maximum rotation rate, so a minimum rotational radius. Small habitats
prefer a dumbbell shape due to its flexible rotational radius.

The lowest upper limit on the habitat size is the co-rotation of mirrors, which is
needed for focusing on windows. If stationary mirrors focus on a window ring instead,
distribution of coolant and light pose the next upper limit, followed by structural integrity
of the habitat interior and hull. The requirement of co-rotation also limits the width of
the radiator, forcing it to elongate along the rotation axis and thereby worsening the
coolant distribution problem.

An optimum size is found in the region between tens of thousands and tens of millions
(108 - 1011m3), where the interior mass (the ”payload”) dominates.

The habitat with the lowest total mass per person is a sphere of 6 million (1010m3,
2×1011W). Its radius is 1.3km, its total mass is 8×1011kg, of which almost three quarters
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are interior mass. For the default dumbbell, the optimum is at half a million (8× 108m3,
rotational radius of 4.6km) due to the larger structural mass.

Optimizing for cost would shift to slightly lower sizes, since hull shielding can be made
from waste and is cheaper.
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Appendices

A Habitat Geometry

The interior volume of the habitat is specified by the habitat population p and the volume
per person νV as VH = pνV. The habitat power is PH = pνP (with power per person νP),
and the interior mass MI = pνI with interior mass per person νI.

A.1 Rotational Radius

The rotational radius RR is the maximum radius from the center of mass within the
habitat. Each shape is characterized by an aspect ratio ξ (see Fig. 1): The cylinder
length is Lcyl = ξcylRR, the tube radius is RT = ξTRR. The oblate spheroid has a minor
radius RA = ξoblRR, and the torus habitat radius is RH = ξtorusRR. The dumbbell habitat
radius is RH = ξdbRR. The two spheres can be of different size, in which case the larger
sphere has R′

H = νRH, defining another aspect ratio ν. Finally, the connection between
them can be a tube, combining the two shapes.

The rotational radius is derived from the given volume and the aspect ratios of the
geometric shape.

� Cylinder: The cylinder habitat volume is VH = πR2
RLcyl = πξcylR

3
R. It follows

that RR = 3

√
VH

πξcyl
.

� Tube: Neglecting the curvature of the endcaps, the length is approximately 2RR

and the volume is approximated as VH = πR2
T2RR = 2πξ2TR

3
R, so RR = 3

√
VH

2πξ2T
.

� Oblate: With the radius of the minor axis RA = ξoblRR, the volume of an oblate
spheroid is VH = 4π

3
RAR

2
R = 4π

3
ξoblR

3
R, i.e. lower than the sphere by the aspect ratio

ξobl. The rotational radius is RR = 3

√
3VH

4πξobl
.

� Torus: A torus has VH = 2π(RR − RH)πR
2
H = 2π2ξ2torus(1 − ξtorus)R

3
R, so RR =

3

√
VH

2π2ξ2torus(1−ξtorus)
.

� Dumbbell: The habitat volume VH = 4π
3
R3

H + 4π
3
R′3

H = 4π
3
(1 + ν3)ξ3dbR

3
R leads to

RR = 1
ξdb

3

√
3VH

4π(1+ν3)
.

In an asymmetric dumbbell, the mass ratio of larger to smaller sphere is µdb ≈
σSA

′
S+ρIV

′
H

σSAS+ρIVH
=

σSR
′2
H+ρI

1
3
R′3

H

σSR
2
H+ρI

1
3
R3

H

=
σSν

2+ρI
1
3
ν3ξdbRR

σS+ρI
1
3
ξdbRR

with the hull surface density σS and

the interior mass per volume ρI =
νI
νV
. The rotational radius of the larger sphere

is found by the center of mass
R′

R−R′
H

RR−RH
= µdb, so R′

R = R′
H + µdb(RR − RH) =

(νξdb + µdb(1− ξdb))RR.

� Dumbbell with Tube: A shielded and inhabited connection tube adds volume
and mass; the resulting shift of the center of mass is neglected for simplicity, so the
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tube length LT = RR − 2RH + R′
R − 2R′

H is evaluated with the above expression
for R′

R, yielding the ratio of tube length to rotational radius lT = LT

RR
= 1− 2ξdb +

νξdb + µdb(1 − ξdb) − 2νξdb = 1 + µdb − ξdb(2 + ν + µdb). The model does not
account for the case of a negative LT, in which the two spheres partly merge. The
total volume is VH = 4π

3
R3

H + 4π
3
R′3

H + πR2
TLT = 4π

3
(1 + ν3)ξ3dbR

3
R + πξ2TlTR

3
R, thus

RR = 3

√
VH

4π
3
(1+ν3)ξ3db+πξ2TlT

.

A.2 Surface

The surface area determines the mass of the hull shielding, MS = ASσS with the surface
density σS. It is already needed for the power of heat conduction through the hull. Seen
from the Sun, the habitat spans a certain cross section (which has the same orientation
as the cross section of the cooling flow in heat connection).

� Cylinder: The cylinder surface is AS = 2πR2
R + 2πRRLcyl = 2πR2

R(1 + ξcyl). Its
cross section is A⊥,H = πR2

R.

� Tube: The tube surface is approximated as AS = 2π(R2
T +RT2RR) = 2πR2

R(ξ
2
T +

2ξT). The cross section is A⊥,H = 4RTRR = 4ξTR
2
R.

� Oblate: An oblate spheroid has a surface area of AS = 2πR2
R+

πξ2oblR
2
R√

1−ξ2obl
ln

1+
√

1−ξ2obl

1−
√

1−ξ2obl
.

The cross section is the same as for the cylinder.

� Torus: The torus has AS = 2π(RR − RH)2πRH = 4π2ξtorusR
2
R(1 − ξtorus) and

A⊥,H = πR2
R (1− (1− 2ξtorus)

2).

� Dumbbell: The surface area of the dumbbell spheres is AS = 4πR2
H + 4πR′2

H =
4π(1 + ν2)ξ2dbR

2
R, projected onto A⊥,H = π(1 + ν2)ξ2dbR

2
R

� Dumbbell with Tube: The combined dumbbell shape has a surface of AS =
4πR2

H + 4πR′2
H + 2πRTLT − 2πR2

T = 2πR2
R (2(1 + ν2)ξ2db + ξTlT − ξ2T). Its cross

section is πR2
Rξ

2
db(1 + ν2) + 2RTLT = R2

R (πξ2db(1 + ν2) + 2ξTlT).

Since the cooling and lighting computations [10] assume a cylinder shape, an effective
habitat radius as approximate input for them is derived from the cross section (RH,eff =√

A⊥,H

π
).

B Artificial Gravity

B.1 Rotation Rate

The maximum radius in the habitat RR is the place of maximum gravity gmax = ω2RR.

The rotation rate follows to be ω =
√

gmax

RR
. A maximum rotation rate implies a minimum

rotational radius (for given maximum gravity), and hence a minimum volume for a specific
shape.

13



B.2 Interior Gravity Distribution

As gravity is g = ω2r = gmax

RR
r with radius r, finding the gravity distribution of volume and

ground area is equivalent to finding its distribution over radius. The volumetric gravity
distribution (fraction of volume per gravity bin) is ∆V

V∆g
. For small heights ∆r, a volume

element ∆V is proportional to the surface area A(r) of a cylinder shell that intersects
with the habitat, ∆V = A(r)∆r = A(r) RR

gmax
∆g.

The total volume inside r is
∫ r

0
Adr. A(r) depends on the habitat shape:

� Cylinder: For a cylinder, the circumference grows linearly with radius, A(r) =
2πrLcyl with cylinder length Lcyl. Thus, the cylinder has a linear gravity distribution
with the peak at maximum gravity (triangle shape), and three quarters of the volume
above half the maximum gravity.

� Tube: For the central region of a tube (r < RT), the length of the cylinder shell
varies between 2RT (in the plane along the tube) and 2

√
R2

T − r2 (in the plane
perpendicular to it). With the circumference 2πr and an average length, the area

is A(r) = 2πr
(
RT +

√
R2

T − r2
)
. In the outer region (r > RT) the intersection of

tube hull and cylinder shell is an ellipse with half widths of RT and r arcsin RT

r
, so

A(r) = 2πrRT arcsin RT

r
.

� Oblate: A sphere has A(r) = 4πr
√
R2

R − r2, as the length of the shells decreases
with r. The peak is at RR√

2
(which follows from setting its derivative to 0). Integration

of A(r) yields −4π
3
(R2

R − r2)
3
2 , so almost two thirds of the volume are at above

half maximum gravity (3
4

3
2 ). Oblates have the same distribution as the sphere, so

A(r) = 4πrξobl
√

R2
R − r2.

� Torus: The torus has A(r) = 4πr
√
R2

H − (r −RR +RH)2.

� Dumbbell (smaller sphere): A dumbbell allows the most flexibility by varying
the connecting cable length and the volume ratio of the two spheres. If the dumbbell
is asymmetric, the following holds only for the outer sphere, whose center is at RR−
RH from the axis (the analysis is equivalent for the larger sphere). The ground is an
elliptic intersection of a cylindrical shell. The half-width parallel to the axis is a∥ =√

R2
H − (r −RR +RH)2. The other half-width is a section of a circle, with the same

angle γ as in the triangle formed by the center of mass, the intersection of hull and
circle, and the center of the sphere. As all lengths of the triangle are known (r, RH,

and RR−RH), this angle can be found by the cosine rule, cos γ =
r2+(RR−RH)2−R2

H

2r(RR−RH)
=

r2+R2
R−2RRRH

2r(RR−RH)
, so a⊥ = r arccos

r2+R2
R−2RRRH

2r(RR−RH)
. The ground area for the outer sphere

is thus A(r) = πa∥a⊥ = πr
√

R2
H − (r −RR +RH)2 arccos

r2+R2
R−2RRRH

2r(RR−RH)
.

� Dumbbell (larger sphere): In the above derivation, RR is replaced by R′
R and

RH by R′
H. But if the center of mass is within the larger sphere (i.e. R′

R < 2R′
H)

and r < 2R′
H − R′

R, the cylinder shell has a length between a∥ and a∥,min =

14



√
RH′2 − (r +R′

R −R′
H)

2, while a⊥ = πr. The flattened shape of the ground con-
sists of two half-ellipses and a rectangle, giving A(r) = π(a∥− a∥,min)a⊥+4a∥,mina⊥.

� Dumbbell with tube: If a tube connects the two spheres, the resulting solution
is the sum of the dumbbell spheres and the tube. As the tube can be asymmetric,
the maximum radius is RR − 2RH on the small-sphere side and R′

R − 2R′
H on the

other side. If the center of mass lies within the larger sphere, the minimum radius
is 2R′

H −R′
R.

B.3 Hull Gravity Distribution

The gravity distribution at the hull is needed for computing the structural mass for holding
the shielding.

The gravity distribution boils down to the hull surface distribution over radius r from
the axis, ∆AS(r) = L(r)fO(r)∆r with the length of the intersection of surface and cylinder
shell L(r) and an orientation factor fO(r) that takes the orientation of the surface relative
to the cylinder shell into account. This factor is 1

cosα
where α is the angle between surface

and radius vector r⃗, so it is 1 where the hull surface is perpendicular to the axis (α = 0),
e.g. cylinder endcaps. Where the surface is parallel to the axis, the corresponding surface
area is at only this radius, e.g. the cylinder rim at r = RR. Otherwise, the total surface
inside r is

∫ r

0
LfOdr.

� Cylinder: The cylinder has a surface of 2πRRLcyl at r = RR. The two endcaps
have length L(r) = 4πr and orientation factor fO = 1.

� Tube: Using the same approximations as for the tube interior area, and approx-
imating the circumference of an ellipse as 2π times the square root of the average

half-width squares, the hull length is (for two sides) L(r) = 4π

√
r2+

(
RT arcsin r

RT

)2

2

for r < RT and L(r) = 4π

√
R2

T+
(
r arcsin

RT
r

)2

2
for r > RT. The orientation factor is

approximated as 1 (it would be larger at r ≈ RT)

� Oblate: A sphere has L(r) = 4πr and fO = RR√
R2

R−r2
. The oblate has the same L,

and its surface orientation is found by ∆AS = L
√
∆a2 +∆r2 = L

√
1 +

(
∆a
∆r

)2
∆r.

Deriving the defining equation r =

√
R2

R −
(

a
ξobl

)2
with respect to a yields fO =√

1 +
(
∆a
∆r

)2
=
√

1 +
r2ξ2obl
R2

R−r2
.

� Torus: The length is L(r) = 4πr (where r > RR−2RH) and the orientation factor
is fO = RH√

R2
H−(r−RR+RH)2

.

� Dumbbell (smaller sphere): The length is approximately L = 2π

√
a2∥+a2⊥

2
. The

orientation factor parallel to the axis is fO,∥ = RH

a∥
. Perpendicular to the axis, the
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angle β between r⃗ and R⃗H is found by the cosine rule, cos β =
r2+R2

H−(RR−RH)2

2rRH
. As

the hull surface is perpendicular to R⃗H, α = β− π
2
and cosα = sin β =

√
1− cos2 β.

For combination with the parallel factor, 1
cosα

is expressed as RH

a∥,eff
to yield an effective

a∥,eff = RH sin β. This enables an averaging which avoids too high factors if one a is
very low: fO = 2RH

a∥+a∥,eff
.

� Dumbbell (larger sphere): Again, RR is replaced by R′
R and RH by R′

H. If
r < 2R′

H−R′
R, the cylinder shell intersects the sphere along a length of approximately

L = 4πr

√
(a∥−a∥,min)

2+4r2

2r
. The 4πr is the circumference of the cylinder shell (on both

sides), the additional factor takes the stretching along the axis into account. The
orientation factor is approximated as fO = 2RH

a∥+a∥,min
.

B.4 Jumping Height

This section is only a sidenote and not directly relevant to the model, but could help in
choosing floor heights. Shielding requirements demand low volume and thus low heights.
On the other hand, enough space for the life forms must be provided. For humans, a
ceiling at jumping height is usually sufficient; any visual impression can be displayed by
screens and mirrors. Exceptions are places where flight devices are used (preferably in
low-gravity sections), where balls are thrown, or where large trees grow.

The acceleration phase is important for a calculation of jumping heights at different
gravities. A common misconception is to assume constant take-off velocity, which results
in a height inversely proportional to gravity h = gE

g
hE (with the Earth values denoted by

subscript E). However, the muscle force must always provide the gravitational acceleration
g in addition to dynamic acceleration a.

If instead assuming constant muscle force per body mass of f = a+ g over an acceler-
ation length of s, the take-off velocity is v =

√
2sa =

√
2s(f − g). The resulting jumping

height is h = v2

2g
= sf−g

g
. This is equivalent to a constant amount of work if s remains the

same, W = mgs+ 1
2
mv2 = mg(s+ h) = mgE(s+ hE), so relative to the Earth values the

height is h = gE
g
(s+ hE)− s.

As the muscle force decreases with faster contraction, a different assumption could
be constant (average) power P = W

t
. In this case the work is reduced by the shorter

time of acceleration, which is approximately inversely proportional to the take-off veloc-
ity. Therefore the quantity Wv = mg(s + h)

√
2gh = m

√
2g3h(s + h) is held constant,√

g3EhE(s + hE) =
√

g3h(s + h). To determine h, a first approximation (neglecting s in

the low-gravity case) is h0 =
1
g

(√
g3EhE(s+ hE)

) 2
3
= gE

g
h

1
3
E(s+ hE)

2
3 . Using s

√
h ≈ s

√
h0

yields h = 1
g

(√
g3EhE(s+ hE)− s

√
g3h0

) 2
3
.

A detailed analysis of the leg muscle force at different velocities could give an accu-
rate answer; presumably the constant power assumption comes closest. The velocity of
maximum power is reached earlier at low gravity, but the final power could be lower.

For example, if on Earth hE = s = 0.5m, the jumping height on the Moon (gE
g
= 6) is

predicted to be
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� for constant take-off velocity h = 6hE = 3m.

� for constant force/work h = 6(s+ hE)− s = 5.5m.

� for constant power h0 = 6h
1
3
E(s+hE)

2
3 = 4.8m and h = 0.6

(
10
√
5− 0.5 ∗ 10/6

√
48/6

) 2
3
=

0.6 ∗ 20 2
3 = 4.4m.

The take-off velocity is v =
√
2gh, which amounts to 3.2, 4.3, and 3.8m

s
, respectively.

A jump (or throw) in a rotating habitat is a straight line as seen from a non-rotating
rest frame. Maximum height is obtained by jumping backwards with respect to rotation,
so that the direction of the jump is perpendicular to the resulting total velocity vector
vt. The angle between vt and the rotational velocity vr is determined by sinα = v

vr
. The

same angle is found between the radius vectors at start of the jump R (perpendicular to
vr) and at maximum height Rmin (perpendicular to vt), cosα = Rmin

R
. The height is thus

h = R−Rmin = R (1− cosα) = R

(
1−

√
1− v2

Rg

)

making use of cos2+sin2 = 1 and g = v2r
R
to replace vr. For small v, the classical expression

h = v2

2g
is recovered by approximating

√
1− v2

Rg
≈ 1− v2

2Rg
. A jump through the center of

rotation is possible if v > vr.
A vertical jump (jump direction perpendicular to vr) is calculated using tanα = v

vr
to

yield h = R
(
1− cos atan v√

Rg

)
.

For example, with a take-off velocity of 3.2m
s
in a habitat of 100m radius and 10m

s2

maximum gravity, one could jump up to h = 3.42m at lunar gravity (R = 17m) instead
of the classical 3m, but only to a height of 2.4m in a vertical jump. A rotating observer
would explain the trajectory (roulette, [1]) with the Coriolis force.

B.5 Floor Height

The habitat is divided into floors or alternating layers of ground and air. A simple model
for a possible variation of air height with gravity is described here.

Part of the air height (hvar) is inversely proportional to gravity (hvar,min at maximum
gravity). This ensures a constant landing speed of something falling from that height.
The other part (hconst) is independent of gravity and includes the ground height. The floor
height is then h(R) = hconst + hvar,min

RR

R
, from which the radii of the floors are deduced

starting at RR.
Although jumping take-off speed is a bit higher at lower gravities, it is not necessary to

increase the whole air height with lower gravity. Increasing only half of it (hvar,min = hconst)
would triple the air height at lunar gravity. Even if the air height at maximum gravity is
only 2.5m, the 7.5m would be enough for the relaxed motion constraints.

The gravity distribution of ground area (fraction of area per gravity bin) ∆A
A∆g

is ob-
tained by weighting the volumetric distribution by the density of floors. It can be skewed
towards higher gravity if floor heights vary. For example, if the whole floor height is
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inversely proportional to radius, the density of floors increases linearly with radius, and
a flat volumetric gravity distribution becomes a triangle shape with respect to ground
surface. A cylinder has a quadratic distribution in this case.

The average gravity can be volume-weighted or ground-weighted. The former is de-
rived by integrating

∫ RR

0
A(r)rdr and dividing the result by VH =

∫ RR

0
A(r)dr. For the

latter, all floor areas times r are added and divided by the total ground area.

C Structural Integrity

Structural material is required to stabilize the whole system against the effects of both
air pressure and centrifugal force. It is characterized by its density ρW (subscript W for
weight support) and by how much force per cross section is applied to it, which must be
less than the tensile strength and is denoted σW. The results depend only on that ratio,
the tensile stress per density Σ = σW

ρW
(which has units of Nm−2

kgm−3 = Nm
kg

= J
kg

= m2

s2
).

C.1 Air Pressure

The hull of a sphere of radius R and air pressure pA has to withstand a stretching force
of πR2pA over its cross section 2πRd (with its thickness d), as the air of a half-sphere

effectively presses outwards. This requires σW = πR2pA
2πRd

= RpA
2d

. With d = RpA
2σW

, it results

in a hull mass of Mp,A = ρW4πR2d = ρWpA
σW

2πR3 = 3pA
2Σ

V with V = 4π
3
R3.

Other shapes need a bit more structural mass per volume. For example, a long tube of
quadratic cross section with diameter D and length L requires at least σW = DLpA

2Ld
= DpA

2d

and a mass of Mp,A = ρW4DLd = 2pA
Σ
V with V = LD2.

Due to safety reasons, a habitat would not be a single air body, but consist of several
segments that can contain the pressure independently. This resembles the latter case
(quadratic cross section). The structural mass is proportional to the volume, adding a
structural density to hold the air pressure ρp,A ≈ 2pA

Σ
.

The air mass of a completely air-filled habitat is MA = VH
pA

105Pa
1.2 kg

m3 with the air
pressure pA. This is included in the interior mass (which has to be at least this air mass).

C.2 Gravity Support

Artificial gravity (with acceleration g = ω2R) can be countered by either vertical or
(nearly) horizontal cables. The former connect a mass element to the rotation axis (hang-
ing), the latter connect the masses at a certain radius with each other (standing). N
mass points of mass ∆M at the same radius R require each either a cable length of R
vertically holding ∆Mω2R, or a length of 2R sin π

N
horizontally holding ∆Mω2R

2 sin π
N
, as can be

seen geometrically (the force is half the projected force as there are two cables holding
that mass point). For large N , the length is 2πR and the force Mω2R

2π
.

As the cross section is the force divided by σW (∆Mω2R
σW

vertically), the required struc-
tural mass is the product of density, cross section, and length:

∆MW =
ρW∆Mω2R2

σW

=
gmaxR

2

ΣRR

∆M
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with ω2 = gmax

RR
. It is identical in both cases if self-weight is neglected. At R = RR, it is

proportional to the radius and the inverse tensile stress.

C.3 Bridges between Vertical Cables

If pure horizontal support is possible, a circle around the axis can hold each floor. Other-
wise (dumbbell and tube), vertical cables hold a floor structure that spans the gap between
them. The need for free space rules out additional cables that connect the floor to the
vertical cables (akin to a cable-stayed bridge). Instead, the support must be integrated
in the horizontal floor. To estimate the structural mass, a simple suspension bridge is
modeled, or equivalently a rigid arc structure. A mixture of these two ensures that no net
horizontal forces act on the vertical cables as the suspension part pulls and the arc part
pushes.

The vertical force diminishes with distance from the vertical cable r as FV(r) =
Mout(r)g = χ(r)Mg with the gravitational acceleration g. Mout is the supported mass
outside of r. It equals the total supported mass M at the vertical cable (FV(0) = Mg)
and falls off with the distribution function χ(r).

In equilibrium, the horizontal force is the same everywhere and given by FH =
FV(0) tanα = Mg tanα, where α is the angle between vertical cable and bridge. The

shape of the cable follows from ∆y
∆r

= FV

FH
= χ(r)

tanα
. Integrating yields y(r) = 1

tanα

∫ r

0
χ(r)dr.

The integration for y results in a parabolic shape if the supported mass decreases
linearly with distance from the vertical cable (χ = 1− r

R
). But a uniform mass distribution

over the supported area is assumed here, which means a quadratic decrease with radius,

or χ = 1−
(
r
R

)2
. The shape is thus y(r) = 1

tanα

(
r − r3

3R2

)
.

With given distance between the vertical cables dV (so R ≈ dV
2
) and bridge thickness

(height of floor structure) b, the angle between vertical cable and bridge is derived from
b = 1

tanα

(
dV
2
− dV

6

)
, or tanα = dV

3b
.

The length differential is ∆L(r) =
√

∆r2 +∆y2 = ∆r
√
1 + χ(r)

tanα
. The cross section is

adapted to withstand the force, A(r) = 1
σW

√
F 2
V + F 2

H = Mg
σW

√
χ2 + tan2 α. The structural

mass of the bridges is thusMB = ρW
∫ R

0
A(r)∆L

∆r
dr = ρWMg

σW

∫ R

0

√
χ2 + tan2 α

√
1 + χ(r)

tanα
dr ≈

ρWMg
σW

∫ R

0

(
tanα + χ

2

)
dr. The approximation is valid if tanα ≫ χ, i.e. if the horizontal

force dominates over the vertical force (much longer than thick). In this case, both ex-

pressions are roughly
√

tan2 α + χ tanα. It follows that MB = ρWMg
σW

∫ R

0

(
tanα + χ

2

)
dr =

ρWMg
σW

∫ R

0

(
dV
3b

+
1−( r

R)
2

2

)
dr = ρWMg

σW

(
d2V
6b

+ dV
4
− dV

12

)
= ρWMgdV

6σW

(
dV
b
+ 1
)
.

C.4 Horizontal Self-Weight

The mass of the structural material itself must also be supported. The required cross
section A for horizontal support can be derived analogously to air pressure (Sec. C.1). In
a cylindrical rim of length L and radius R, the outward force (M +MW)ω2R acts on the

surface area of 2πRL, creating a pressure of pW = (M+MW)ω2

2πL
. On the other hand, the

stretching force on two opposite sides of the circular cable is the pressure times the area
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between the sides, pW2RL, acting on the cross sectional area 2A, hence a tensile strength
of σW = pW2RL

2A
is needed. This yields a pressure of pW = AσW

RL
= MWΣ

2πR2L
(finding A from

MW = 2πRAρW). Equating the two expressions for the pressure, Mω2 = MW( Σ
R2 − ω2),

gives

MW = M(
Σ

ω2R2
− 1)−1

The same can be obtained from the earlier result that the force per mass along a
horizontal cable is 2π times smaller than along a vertical one, which implies a cross

section of A = (M+MW)ω2R
2πσW

(again using MW = 2πRAρW).

If Σ
ω2R2 ≫ 1, the structural mass can be approximated as MW = M ω2R2

Σ
, which is the

result without self-weight.

C.5 Vertical Self-Weight

The gravity that acts on a vertical cable linearly decreases upwards. While the lower
end holds only the mass element, the upper end additionally holds the cable and must
therefore be thicker.

The force at radiusR is F (R) = Mω2R. It increases upwards by ∆F = −ω2rρWA(r)∆r,
so the cross section increases by ∆A = ∆F

σW
= −ω2

Σ
rA(r)∆r.

An ansatz is A(r) = Be−Cr2 , as its derivation resembles this expression: dA
dr

= −2rCA.

It follows that C = ω2

2Σ
. Also, as A(R) = F (R)

σW
= Mω2R

σW
= Be−CR2

, the remaining unknown

is B = Mω2R
σW

eCR2
, so

A(r) =
Mω2R

σW

e−
ω2

2Σ(R2−r2)

This is a Gaussian shape, centered at the axis with its maximumB and falling outwards
until reaching Mω2R

σW
at R.

The structural mass isMW = ρW
∫ R

0
A(r)dr = ρWB

∫ R

0
e−Cr2dr = ρWB

√
π
4C

erf
(√

CR
)
=

ρWB
2C

√
πC erf

(√
CR
)
, leading to the final result

MW = MR
√
πCeCR2

erf
(√

CR
)

The Gaussian error function erf
(√

CR
)

is approximately 1 for
√
CR > 1 and 2

√
C
π
R

for small
√
CR (≲ 0.5). The former case describes an exponential explosion of structural

mass with growing R. In the latter case, the exponential term approximates 1 and the
expression reduces to MW ≈ 2MR2C = M ω2R2

Σ
, which is the structural mass without

self-weight.
The derivation is similar to the constant-stress solution for a space elevator, which

also holds its own weight in varying gravity.
In addition to the payload mass, the bridges between the vertical cables have to be

hold. The total structural mass is thus MW,total = MB + MW

M
(M + MB). If horizontal

support is possible due to a closed circle around the axis (in energy collection as well as
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in cylinder, oblate spheroid, and torus habitats), the lower mass of horizontal and vertical
is chosen. Habitat interior and hull in dumbbell and tube need the vertical support with
bridges. The radiator requires vertical support, but no bridges (using its hull for support).

C.6 Co-rotational Limit

Contrary to the space elevator, self-weight would not pose a problem to space habitats,
as long as the radius of co-rotating components is not too large. A critical co-rotational
radius RCoRot is derived from the limit for horizontal support, Σ

ω2R2
CoRot

= 1, or

RCoRot =

√
Σ

ω2
=

√
1

2C
=

√
ΣRR

gmax

In terms of r = R
RCoRot

, the structural mass can be expressed as MW = M (r−2 − 1)
−1

for horizontal support and MW = Mr
√

π
2
e

r2

2 erf
(√

1
2
r
)

for vertical support. Without

self-weight, it is MW = Mr2. The bridge mass is MB = Mr dV
6RCoRot

(
dV
b
+ 1
)
.

At the co-rotational limit (r = 1), horizontal support is not possible, and vertical

support results in MW = M
√

πe
2
erf
(√

1
2

)
= 1.4M , while MW = M without self-weight.

At twice that radius (r = 2), the mass could still be hold vertically, but at the expense

of MW = M2
√

π
2
e2 erf

(
2
√

1
2

)
= 17.6M . At half that radius (r = 1

2
), MW = M

3
for

horizontal and MW = MR
√
πCeCR2

erf
(√

CR
)
= M

√
π
8
e

1
8 erf

(√
1
8

)
= M

4
e

1
8 = 0.28M

for vertical support. Without self-weight, it would be M
4
.

MW = M is at r = 0.88 for vertical support (at 0.71 for horizontal support and at 1
without self-weight). At r = 0.31, structural mass amounts to 10%, and at r = 0.1 to
only 1% of M .

The rotational radius with a certain r is found by setting R = RR, so RR = rRCoRot =
r2 Σ

gmax
. This makes 10km for r = 1, Σ = 105 Nm

kg
and Earth gravity. For r = 0.1 RR = 100m

and RCoRot = 1km.
Co-rotation can only be maintained if the radius is not too large, thus a maximum

radius for light and electricity is given by γL,ERCoRot. Above that radius, the energy
collection system is decoupled from rotation. Mirrors are preferably kept in rotation
to allow higher concentration, while non-rotating PV modules can be connected by a
sliding contact at the axis. Although decoupling from rotation could be achieved for heat
emission as well, sliding contacts at the central connection tube are more difficult due to
the pressure. The radiator is hence assumed to co-rotate. To maintain structural integrity,
its maximum radius Rem is the minimum of the quadratic solution, κemRR (as in [10]),
and γemRCoRot, where γem is the maximum ratio of radiator to co-rotational radius.

C.7 Computation

The total structural mass is obtained by integrating over the radius. In the accompanying
program, this is done numerically by summing the contributions from the floors (using
the ground radius for the interior mass and an average radius for the hull).
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Radiator, mirrors, and electricity generation are separated into N slices of equal mass.
As the expression without self-weight is proportional to the square of the radius, an
effective radius of such a slice is derived by analytical integration, R2

eff,i =
∫ Ri+1

Ri
r2 dM

Mi
.

The radiator has a rectangular shape, so the incremental mass increase is independent
of r, dM

Mi
= dr

Ri+1−Ri
. With Ri = iRem

N
, integration results in

Reff,i =

√
R3

i+1 −R3
i

3(Ri+1 −Ri)
=

√
(i+ 1)3 − i3

3

Rem

N

For the circular energy collection system, dM
Mi

= 2rdr
R2

i+1−R2
i
, and the integration leads

to R2
eff,i =

2
R2

i+1−R2
i

∫ Ri+1

Ri
r3dr =

R4
i+1−R4

i

2(R2
i+1−R2

i )
=

R2
i+1+R2

i

2
. Equal areas of circular slices are

obtained by Ri =

√
R2

min + i
R2

max−R2
min

N
, so

Reff,i =

√
R2

i+1 +R2
i

2
=

√
R2

min + (i+
1

2
)
R2

max −R2
min

N

Rmin is 0 for light and RL for electricity, and Rmax is RL for light and RE for electricity
(or γL,ERCoRot, if that is smaller).
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