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Abstract 

The problem of evaluation of time spent for 
attitude maneuver (rotation) during a finite rotation 
given a boundedness of angular rates and accelerations 
is solved. (The finite rotation means that the spacecraft 
body basis is moved from its initial position to the final 
one by the single rotation about an axis of finite 
rotation.) It is supposed that the maximum angular 
rates and accelerations about each spacecraft body axis 
are specified and different for each spacecraft body 
axis. 

Very simple solution for the attitude maneuver 
minimum duration along with maximum angular rate 
and acceleration is suggested. The numerical results 
can be found by some uncomplicated procedure with 
several formulas and two tables. 

Assessment of the minimum duration for the 
spacecraft attitude maneuver is most important for the 
rotations during the docking and undocking processes 
and prior to orbital correction. 

Introduction 

While calculating the spacecraft attitude 
maneuver (rotation), the problem of evaluation of time 
spent for rotation often arises because it is required 
usually to perform the rotation with minimum possible 
duration. 

However, a boundedness of the angular rates 
and accelerations impedes the rapid implementation of 
attitude maneuver. Maximum absolute magnitudes of 
these rates and accelerations depend on spacecraft 
moments of inertia and available torque created by 
spacecraft actuators. 

It is shown below how to find the attitude 
maneuver minimum duration along with maximum 
angular rate and acceleration if their components about 
each spacecraft body axis are bounded, and maneuver 
is performed as a finite rotation. The latter means that 
the spacecraft body basis is moved from its initial 

position to the final one by a single rotation about an 
axis of finite rotation1

• 
2

. 

Geometry of finite rotation 1s shown in 

Figure 1. Here, e is an axis of a finite rotation, x is 
an angle of finite rotation, 0 is the spacecraft center 
of mass, Xi and XF are the initial and final positions of 
the spacecraft body axis X, and a is an angle between 

the body axis X and axis of the finite rotation e . This 
angle is constant during the rotation. The body axis X 
moves over the surface of the cone with vertex in the 
point 0 and cone angle 2a The angles /3 and r 
between two other spacecraft body axes ( Y and Z) and 

axis of finite rotation e are also constant, and these 
axes move over the surface of the similar cones with 
the cone angles 2/Jand 2yrespectively. 

Fig. 1. Geometry of finite rotation 

Whole information about a finite rotation 
except the angular rates and angular accelerations is 

included in components of the rotation quaternion q 1•
2 
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Set up of Problem 

For a given attitude maneuver, the angular 
rate and acceleration vectors 

and s~t: 
1:z 

(2) 

coincide with the axis of finite rotation e . The 
maximum allowable magnitude of these vectors 
(Wm.u, and &.- ) depends on absolute value of the 
angular rate and acceleration limit for each body axis 
( Wxmax' Wr1111tt ' Wzmax and &xmax. &ymax, &zmax ) and does 
not depend on their sign. That is why, it is enough to 
consider only positive value of these limits and the 
unit vector of finite rotation in the spacecraft body 
reference frame is 

jcosa ! 
- o 
e = lcosP I 

lcosr l 
(3) 

The limits mentioned above form some 
envelopes for the maximum angular rates and 
maximum angular accelerations in the first quadrant of 
the body reference frame (X. Y, Z). One of the 
mentioned envelopes (for angular rates) is shown in 
Figure 2. It is a parallelepiped with edges la>x1111tt I, 
IO>rmax I, IO>zmaxl. The value of Wmax depends on which 
one of the parallelepiped faces (1, 2, and 3 in the Figure 

2) is pierced by vector e , i. e. on the components of the 
- o 

unit vector e . In the case that is shown in the Figure 
-

2, vector e pierces the face 2. That means that 

CUy = Wrmax and lOmax = I COy max I 
lcosP I 

Maximum Angular Rate and Acceleration 

(4) 

The determination of the pierced face 
number can be made through the use of the 

- o 
projection of the unit vector e on the coordinate 
planes XY, YZ, and ZX. The boards of the envelope 
on the mentioned coordinate planes are the 
rectangles, which sides are la>xmax I. IWrmax I, lwzmaJ. 

-o 
Comparison between positions of the unit vector e 209 

projection and rectangle diagonal allows the 
determination of the number of parallelepiped faces 

z 

x 
Face 1 (01) 

Figure 2. Envelope of maximum angular rate 

-
( 1, 2, 3 ), which can be pierced by vector e . The 

position of the mentioned projection relative to the 
rectangle diagonal depends on relation between 
following ratios 

I cos P I I cos a I I cos r I 
I cos a I ' I cos r I ' I cos P I ' 

(5) 

I COrmax I I COx max I I COz max I 
I COX max I' I COz max I ' I COr max , . 

The situation when a projection of the unit 
-o 

vector e on the plane XY is closer to the X axis then 
diagonal of the rectangle with sides I Wx1111tt I and 

la>rmax I, is shown in Figure 3. In this case, I cos p I ::;; 
lcosa l 

I COy max I ' and vector e can pierce the half of the 
I COx max I 
face 3 (shaded triangle) and whole face 1 (see Figure 

3) th . . . h I cos p I 
. In e opposite situation, w en > 

lcosa ! 

I COy max I ' vector e can pierce another half of the 
l@xmaxl . 

face 3 (triangle without shading) and the whole face 
2. The similar situations for planes YZ and ZX are 
shown in Figures 4 and 5. Two other cases are 

shown in Figure 4. In the first of them, I cos r I $ 

lcosP I 



I Wz max I ' and the vector e can pierce the shaded 
I Wrmax I 
half (triangle) of the face 1 and whole face 2. 

Projection of the unit 
-o 

vector e on the plane XY 

y 

Y2 Face 3 (.13) 

z 'h Face 3 (V3) 

Face 1 (01) Face 2 (02) 

:a 
J,.-----" .... " .... 

~ ............... 

y 

jcosal x 
-o 

Figure 3. Correlation between position of the unit vector e projection on the plane XY and faces 
-

pierced by vector e 

Projection of the unit 
- o 

vector e on the plane Yl 

Face 3 (03) 

z Y2 Face 1 (Vl) I Face 2 (02) I 

la>zmen: I 
I 'hFace 1 (.11) I 

lcosJ-1 -( ....... :;.... ..... _ ...... _ ... __ ___.___.,.. 

lcos,b1 laJrmen: I Y 

-o 
Figure 4. Correlation between position of the unit vector e projection on the plane YZ and faces 

pierced by vector e 

In the opposite situation, when I cos r I > I Wz max I ' 
I COS ,81 I Wrmax. I 

-
vector e can pierce another half of the face 1 and 
whole face 3. Also, two cases are shown in Figure 5. 

I cos a I I co I - . When :s; x max ' vector e can pierce the 
I cos r I I Wz max I 

shaded half of the face 2 and whole face 3. When 
I cos a I I co I - . 
--- > x max ' vector e can pierce another 
I cosy I I CVz max I 

half of the face 2 and whole face 1. 

The total quantity of the possible combinations 
of the inequalities, that establish relation between the 
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ratios listed in (5), is eight. 

The results obtained from Figures 2-5 for 
angular rates are summarized in the Table 1. This 
table covers all eight options for relations between 
ratios listed in (5) and includes number of face 
(rectangle) or part of face (triangle), which is pierced 

by vector e according to these relations. The 
mentioned rectangles and triangles are shown in the 
bottom line for each option in the columns 3, 4, and 
5 of the Table. These rectangles and triangles are 
actually some sets. Intersection of these sets 

determinates what component of the vector co is 
restricted. 



Table 1 

. . I cos P I I cos a I I cosy I 1 w I 1 w I 1 w I Face 
Option Relation between ratios and r max x max z max 

lcosaj' lcosyj ' lcosfil la>xmaxl' la>zmax l' la>r max l part @INAX 

number 

1 2 3 4 5 6 

I COS fJ I S I a>r max I I cosa I I a>xmax I I cosy I s I a>zmax I 
I > Al jcosa l l@xmax I !cosy ! l@zmax I I cos/] I l@rmax I 

Wmar = I @x max I 
Dl+A3 Dl+V2 0 2+Al 

I COS fJ I S I @r max I I cosa I I wxmax I I cosy I I wzmax I 
lcosa l 

2 > > VI lcosal l@xmax I I cosy I l@zmax I I cos/] I I @rmax I 
Dl+A3 Dl+V2 0 3+Vl 

N --

I COS /J I I @r max I I cosa I s I a>xmax I I cosy I s I wzmax I 
3 > ~ jcosal I @xmax I jcosy l I @zmax I I cos/] I I @rmax I 

Wmar = I a>r max I 02+V3 03+A2 02+Al 

I COS fJ I I @r max I I cosa I I a>xmax I I cosy I s I a>zmax I 
!cos/] I 

4 > > V2 jcosaj l@xmax I !cosy! I a>zmax I !cos/JI I a>r max I 
02+V3 Dl+V2 02+Al 

I COS fJ I $ I @r max I I cosa I s I a>xmax I I cosy I I a>zmax I 
5 > A3 jcosa l I @xmax I !cosy ! I @zmax I jcos/J I I a>rmax I 

Dl+A3 0 3+A2 03+ VJ 
Wmar =I @zmax I 

I COS /J I I @r max I I cosa I $ I wxmax I I cosy I I a>zmax I jcosy J 
6 > > V3 jcosa l I @xmax I !cosy ! I @zmax I I cos/] I I @rmax I 

0 2+V3 0 3+A2 0 3+Vl 

I COS fJ I I @r max I I cosa I s I a>xmax I I cosy I $ I a>zmax I Wmar =I wxmax I_ 
7 $ Main jcosa l l@xmaxl jcosrl I @zmax I I cos/] I 1 wrmax I diagonal 

lcosal 
Dl+A3 0 3+A2 0 2+Al Ok _I a>rmax I 

I COS fJ I I @r max I I cosa I I a>xmax I I cosy I I wzmax I (see !cos/] I 
8 > > > Fig. 6) _I a>zmax I jcosal l@xmax I jcosy l I @zmax I I cos/] I l@rmax I 

0 2+V3 Dl+V2 0 3+Vl lcosr l 



For example, VI in column 5 for option 2 (triangle 
without shading on the facel) is the intersection of 
the DI in column 2, 0 1 in column 3, and Vl in 

Projection of the unit 
-o 

vector e on the plane zx 

x 

l@xmaxl 

lcosal-{.,.····:;...·····_·····_····-+----'--_. 

jcosn la>zmaxl Z 

column 4. In the same way, Lil in the column 5 for 
option I (shaded triangle on the face 1) is the 

x 

-o 

\ 
I 
I 
\ 
\ 
\ I 
\ I 

\• 
, 

; , 
,.... ___ _ 

j Face 3 (03) I 
Yz Face 2 (.12) 

Y2 Face 2 (V2) 

y 

Face 1 (01) 

Figure 5. Correlation between position of the unit vector e projection on the plane ZX and faces pierced by 

vector e 

intersection of the 0 1 in column 2, DI in column 3, 
and Lil in colwnn 4. So, options I and 2 together 

form the face 1, and vector e pierces face 1. In this 
case Wx is the restricted component, and 

z 

m 

-

aJmax= I W xmax I (column 6). Options 3 and 4 
jcosal 

together form the face 2, and in this case wr is the 

y 

Figure 6. Vector e for options 7 and 8 

restricted component, and «>max = I Wy max I . Options 5 
I cos P l 

aµd 6 together form the face 3, and in this case eoz is 

the restricted component, and Wmax = I Wz max I . 
lcosrl 

Options 7 and 8 are different from other options 
because it seems that their sets (for example, sets 

02+V3, DI+V2, and 03+Vl for option 8) do not have 
any intersections. In fact the mentioned sets have the 
intersections that are the boundaries of these sets. It is 
clear from Figure 6. The planes A. B, and C on this 
Figure include axes OX. OY, OZ and diagonals 0/, On, 
and Ob of the rectangles Oc/m, Oanm, and Oabc 

respectively. Vector e coincides with these planes 
when inequalities in lines 7 and 8 of the Table I 
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change into equalities. In other words, these planes are 

the boundary sets of possible position of the vector e, 
and their intersection is the main diagonal Ok of the 

parallelepiped. So, in this case, vector e coincides 
with the parallelepiped main diagonal, and 

(6) 

OJmax =I a.>xmax I = I Wrmax I = I Wzmax I 
I cos a I I cos P I I cos r I 

The column 6 in the Table l includes the 
fonnulas for calculation the OJmax for all possible 
relations between ratios (5). 

The envelope for angular acceleration is also a 
parallelepiped like for angular rate. Its edges are 
l&xmar I, l&rmar I, l&zmaxl· The value of &max depends on 
which one of the faces (1, 2, and 3) of this 

-
parallelepiped is pierced by vector e like for OJmax. 

The same type of analysis, which was performed for 

T 

(5), can be completed for the ratios 

I cos p I I cos a I I cos r I 
I cos a I ' I cos r I ' I cos P I ' 

I &rmax I I & Xmax I I &zmax I 
l&xmax l ' l &zmax l' l &rmaxl. 

(7) 

For the ratios listed in (7), the same eight 
combinations of the inequalities exist, and the Table 2, 
which is similar to Table 1, can be built like for ratios 
(5). The Table 2 (see below) can be obtained from the 
Table 1 by substitution l&xmax I, l&rmar J, l&zmaxl and 6rnax 
instead of IOJx,,iaxl, la>rmarl, ICOzmaxl and lUmax· Column 5 in 
Table 2 includes the formulas to calculate &max for all 
possible relations between ratios (7). 

Minimum Duration of Attitude Maneuver 

After determination lUmax and &max, the 
minimwn duration of an attitude maneuver can be 
assessed. The time plot for the angular rate OJ is shown 
in the Figure 7. First, the angular rate co increases from 

Figure 7. Angular rate for an attitude maneuver 

0 to OJmax with the angular acceleration &max at the 
interval Tc Then, the angular rate OJ is constant and 
equal to OJ,,rax at the interval T-2Tc and after that 
decreases from COmax· to 0 with the angular acceleration 
(-&..ax) at the interval T6• Obviously, the time plot that 
is shown in the Figure 7 provided a minimwn duration 
of rotation. If T (see Figure 7) is a duration of attitude 
maneuver and z is an angle of finite rotation, then 
fonnulas 
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(8) 

and 
(9) 

are true. 



Table 2 

. . I cos P I I cos a I I cos r I I c I I c I I & I Relatwn between ratios and r max x max z max Option I cos a I ' I cos r I ' I cos p I I Ex max I ' I & z max I , I & y max I &"""' 

I 2 3 4 5 

lcosp ~ lcrmax I jcosal IExmax I I cos r I ~ I s z max I 
1 > 

&max = I & X max I lcosa l&xmaxl jcosrl I &zmax I I cos P l I &rmax I 
I cosp ~ l&rmax I I cosa I I &xmax I I cosr I I &zmax I jcosal 

2 > > jcosa I Ex max I jcosrl I Ezmax I jcosPI I &rmax I 
I COS P I &rmax I I cosa I ~ I Exmax I I cos r I ~ I s z max I 

3 > 
&max= I &rmax I jcosa I Ex max I jcosyl I Ezmax I jcosPI I &rmax I 

lcosP l&rmax I I cosa I I &xmax I I cosy I ~ I E z max I I cos P l 
4 > > jcosa IExmax I lcosr l I Ezmax I I cos P l IErmax I -:t ...... 

lcosp ~ lcrmax I I cosa I ~ I &xmax I I cosy I I &zmax I 
5 > 

&max = I Ezmax I jcosa l&xmax I jcosr l I Ezmax I jcosPI IErmax I 
lcosp lcrmax I I cos a I ~ I s x max I I cosy I I &zmax I I cosrl 

6 > > jcosa l&xmax I jcosrl I &zmax I I cos Pl I Er max I 

N 

7 
I COS P ~ I &rmax I jcosal ~ IEx max I I cos r I ~ I s z max I &max= l&xmax I= IErmax I_ 
lcosa l&xmax l jcosy l I &zmax I I cos P l I &rmax I I cos a I I cos p I 
lcosp IErmax I I cosa I I &xmax I I cosy I I &zmax I _I &zmax I 

8 > > > jcosyl jcosa I Exmax I I cosy I I &zmax I I cos Pl I Er max I 



The final formula for the minimum duration of 
attitude maneuver T that can be obtained from 
fonnulas (8) and (9) is 

T = _L+ (l)max (10) 
(I) max &max 

Calculation Procedure 

The minimum duration of the spacecraft 
attitude maneuver (finite rotation) can be calculated by 
the following procedure: 

l. Calculation of the angle of the finite rotation z and 
the direction cosines cosa, cosj3, C0'5'f of the finite 

-
rotation axis e in the spacecraft body reference 
frame (X. Y, Z) using formulas ( 1) for the 
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components of the of the rotation quaternion q : 

x = 2arccos% , cosa = q1 

~1-q; ' 
(11) 

2. Selection of the aJ,,aax from the Table 1 using ratios 
(5). 

3. Selection of the 6it.ax from the Table 2 using ratios 
(7). 

4. Calculation of the minimum duration of the 
spacecraft attitude maneuver T using (10). 
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