NASA Contractor Report 3345

NASA CR 3345 pt. 2 C. 1

ţ.

LOAN COPY: RETURN 10 APVIL TECHHCAL VIEL ST KIRTLAND AND, DUB.

CONTRACT NAS8-33023 NOVEMBER 1980

Electrostatic Protection of the Solar Power Satellite and Rectenna Part II - Lightning Protection of the Rectenna

Rice University Houston, Texas

Prepared for Marshall Space Flight Center under Contract NAS8-33023

Scientific and Technical Information Branch

1980

. .

.

Table of Contents

I. LIGHTNING ROD PROTECTION CAPABILITIES SUITABLE TO THE RECTENNA
II. SIMULATIONS OF LIGHTNING STRIKES TO THE SPS RECTENNA
[II. GROUNDING CONSIDERATIONS FOR THE PROPOSED LIGHTNING PROTECTION SYSTEM28
IV. MATERIALS AND SPECIFICATIONS FOR LIGHTNING PROTECTION
V. ESTIMATE OF POWER LOSS FROM THE BEAM
VI. MICROWAVE DIODE FAILURES DUE TO INDUCED CURRENT TRANSIENTS
/II. COMPUTER SIMULATION OF ELECTROSTATIC FIELD AROUND AN SPS RECTENNA4
II. COMPUTATION OF LIGHTNING ELECTRIC FIELDS
IX. COMPUTATIONS OF DIODE FAILURE
X. LIGHTNING PROTECTION FOR SERIES DIODE STRINGS6
XI. CLOUD-TO-GROUND LIGHTNING DISTRIBUTION IN THE UNITED STATES

- 1. The very high lightning flash density in many parts of the United States and the large size of the SPS rectenna require us to incorporate lightning protection systems in the rectenna design.
- 2. A distributed lightning protection system is described in this report that will protect the rectenna components from direct lightning strike damage and will, in addition, provide reduced induced lightning effects in the power and control circuits.
- 3. The proposed lightning protection system should be incorporated as a structural member of the rectenna support system; viewed as such, the lightning protection system will not appreciably increase the total material requirements for the rectenna unless materials are used that are incapable of safely conducting lightning currents.
- 4. The lightning protection design places the conducting elements so that the microwave shadow cast by protection systems falls along the upper edge of the billboard on which it is mounted (and the lower edge of the next billboard to the north); these shadow areas are only a slight fraction of the collecting area, so the protection elements produce very little, if any, additional power loss to the rectenna as a whole.
- 5. Individually the microwave diodes are self-protecting with respect to "average" lightning and those near the center of the rectenna are safe from extreme lightning. However, the series connection of the diodes to form 40,000 V strings creates a protection requirement for the string. Standard surge protection practices are necessary for the string.
- 6. Electric power industries usually attribute 10% of the cost of power transmission equipment to lightning protection requirements. If this factor is not already included in cost estimates, it should be added.

SUMMARY OF THE RECOMMENDED LIGHTNING PROTECTION DESIGN

Based upon our research, computer simulations, and laboratory tests with a scale model, we recommend a distributed lightning protection system that employs a horizontal conducting member with points and grounds placed at every bay or billboard (14.69 meters apart). This configuration not only provides greater protection than other configurations that were evaluated, it is more easily integrated into the structural design of the rectenna. The recommended system is shown in Figure 1.

DISTRIBUTED LIGHTNING PROTECTION SYSTEM

FIGURE 1

PREFACE

The objectives of this study are to evaluate the hazard posed by lightning flashes to ground on the SPS rectenna and to make recommendations for a lightning protection system that will provide sufficient protection to the rectenna. For purposes of this study, the SPS rectenna design is based upon the data supplied to us by Rockwell International in July, 1978.

This study has four major components, each with several elements of investigation. The components were: lightning distribution; lightning interactions; rectenna damage estimates; rectenna protection. The elements of each component are listed in Table A. The study plan was to proceed from top to bottom evaluating the elements listed in each component; work proceeded in a parallel manner for the four components. The organization of this final report reverses this order by presenting the more important results of the study first, then following this with the material and considerations leading to the conclusions.

TABLE A

Rectenna Electrostatic Protection

	<u>Lightning</u> Distribution	Ī	<u>Lightning</u> nteractions	Re	<u>ectenna Damage</u> Estimates	<u>P</u>	<u>Rectenna</u> rotection	
1.	Obtain climat- ological data.	1.	Review/compile data on lightning parameters.	1.	Diode failure modes (scaled from avail- able diodes.)	1.	Panel transient protectors.	
2.	Format data for computer use.	2.	Construct program for computation of fields and currents in the rectenna plane from parameterized lightning	2.	Insulation breakdown.	2.	Billboard surge protectors.	
3.	Construct program for computation of lightning density.	3.	Evaluate en- hancement factors.	3.	Direct strike damage estimates.	3.l	ightning Inverter protectors	
4.	Produce contour map of light- ning density.	4.	Conduct laboratory simulations.	4.	Direct strike damage estimates.	4.	Lightning rod systems.	
						د		
Hazard Evaluation Statistical Evaluation of Lightning Effects			Rectenna Design Recommendations for Electrostatic Protection					
Final Report								

The Principal Investigator was J.W. Freeman, Jr., and the principal author of this section of the final report was A.A. Few, Jr. They wish to express their thanks and appreciation to the following co-authors, all of whom were or are associated with Rice University.

J. Bohannon R.C. Haymes D. O'Gwynn M.F. Stewart I. ANALYSIS OF LIGHTNING ROD PROTECTION CAPABILITIES FOR A CONFIGURATION SUITABLE TO THE RECTENNA

- 1. Cone of Protection Considerations:
- I. 1.1 Definition and Considerations

The capability of a vertical conductor to attract a lightning flash is described by the <u>cone-of-protection</u>, or perhaps more accurately the cone-of-attraction. In theory, any lightning flash that would have entered this cone had the vertical conductor not been in place, will strike instead the conductor and be shunted to the ground. The method by which this process takes place is as follows:

The lightning stepped leader creates high voltages over a wide area on the rectenna because of the large charge on the leader tip. At points on the rectenna where the electric field reaches breakdown values due to local enhancement factors, upward propagating sparks are initiated which move to meet the downward propagating stepped leader. The upward propagating spark which first makes contact with the leader completes the electrical circuit and the lightning flash current will pass through the structure that initiated the successful upward going spark.

The cone of protection is primarily a function of the height of the vertical conductor because of the field-enhancement factor which enables the taller object to initiate the upward spark before lower objects. Other factors enter into the consideration of the cone of protection, such as the charge on the leader tip and the velocity of the leader, because these factors strongly influence the timing of the production of upward sparks and the height at which the spark and leader meet. In general, the results of research into this subject have shown that the larger the leader charge, then the larger the angle β of the associated cone of protection. Since larger leader charges are usually associated with the larger lightning currents, we find a fortunate result that the cone of protection increases with the potential hazard of the lightning flash.

It follows then that the angle β of the cone of protection (See Figure 2) varies with the particular lightning flash. $\beta = 45^{0}$ is a very commonly used design angle in the United States and many of the examples in this report employ $\beta = 45^{0}$.

Figure 2

1.2 Distributed Lightning Protection Systems

The cone of protection and the experimental data used to evaluate are specifically related to the single elevated point, and in most cases the system under consideration is 10 to 100 meters in height. As will be seen later, lightning protection of the rectenna falls into a class of structures that requires distributed lightning protection tactics. Figure 3 illustrates a distributed system used by power transmission companies. The main point is that the cone of protection concept is of limited usefulness in the total protection problem. We will use it on the panel and billboard scale as a technique to make a comparative assessment of capabilities of various configurations.

2. Lightning Rod Protection Configurations Compatible with the SPS Rectenna

We have considered three different configurations of lightning rod systems in this effort. In the smallest scale system considered each rectenna panel (0.74m in width) had a short lightning rod attached; see upper example in Figure 4. In the medium scale system each rectenna support structure (14.69m apart) or billboard will have an attached lightning rod; see middle example in Figure 4. And, in the distributed protection system, short terminals located on each rectenna support structure (14.69m apart) were connected by horizontal conducting structures; see lower example in Figure 4.

As seen in the analysis of the billboard scale system, it is impractical to seriously consider larger scale systems.

POWER LINES EMPLOY DISTRIBUTED LIGHTNING PROTECTION SYSTEMS. THIS ILLUSTRATION SHOWS A "STATIC" OR GROUNDED PROTECTION WIRE TAKING A STRIKE AND PROTECTING THE POWER LINES BELOW.

FIGURE 3

ω

and the second second

4

÷

FRONT

SIDE

PANEL SCALE LIGHTNING PROTECTION SYSTEM

FIGURE 5

2.1 Lightning Rod Protection at the Panel Scale

In this system configuration a relatively short lightning rod is positioned at the top of each panel and oriented perpendicular to the panel face (see Figure 5). Conceptually the rod is centered on the top of the panel, but in practice it could be on the panel edge without altering the results of this analysis.

Let α be the inclination of the rectenna. Figure 6 illustrates the case where β , the angle of the cone of protection, is greater than α . This figure applies only to the conditions in the vertical plane that passes through the lightning rod and is perpendicular to the rectenna face. In this particular projection it appears that the short (example 0.74m) lightning rod on the panel provides adequate protection to the rectenna. In other projections we see that there are, however, "holes in the armor."-

Figure 7 is an enlargement (x10) of the lightning rod portion of Figure 6, and defines the parameters to be used in the following discussions. The cone of protection intersects the plane of the rectenna to form conic sections:

(1) If $\alpha + \beta = 90^{0}$ the intersection is a parabola. (2) If $\alpha + \beta < 90^{0}$ the intersection is an ellipse.

- (this is the case illustrated in Figures 6 & 7)
- (3) If $\alpha + \beta > 90^{0}$ the intersection is a hyperbola.

If we now look at the intersection of the cone of protection with the panel for the specific cases above, we see the emergence of the protection problem with this type of lightning rod protection configuration. From the geometry of Figure 7 we see that the axis of the cone is at l = L tan α and that the vertex of the conic is at d = Ltan $(\beta - \alpha)$ relative to the top of the panel.

FIGURE 6

d

~7

FIGURE 7

ENLARGED VIEW OF THE UPPER END OF THE RECTENNA IN FIGURE 7.

In a coordinate system defined in the rectenna plane with the origin at the axis of the cone and the y axis directed north (toward top of rectenna) and the x axis directed east, the equation for conic is:

$$\frac{x^{2}\cos^{2}\alpha}{L^{2}\tan^{2}\beta} + \frac{y^{2}(\cos^{2}\alpha - \sin^{2}\alpha \tan^{2}\beta)\cos^{2}\alpha}{L^{2}\tan^{2}\beta} + \frac{2y\sin\alpha\cos\alpha}{L} = 1$$

For the parabolic solution this equation reduces to:

$$x^{2} = -\frac{2L \sin^{2} \beta}{\cos \beta \cos \alpha} \quad (y - \frac{L}{2 \cos \beta \cos \alpha})$$

In figure 8 we have plotted the intersection of cones of protection for three lightning rods of lengths 0.185m (= 1/4 panel width), 0.37m (= 1/2 panel width), and 0.74m (= panel width.)

In these examples the rectenna inclination angle α is taken to be 45° and the cone of protection β is equal to 45°. The resulting intersections are parabolas for the cases depicted in Figure 8. For the parabolic solution the cone of protection is parallel to the face of the rectenna in the vertical plane bisecting the panel (The view of Figure 6 and 7 except that here $\alpha = \beta = 45^{\circ}$).

At lower latitude sites (below 40°) the rectenna inclination angle α is less than 45° and the 45° cone of protection intersection becomes an ellipse; in Figure 6 the vertical projection illustrates the intersection in the plane through the lightning rod. The elliptic solutions leave regions along the base of the rectenna unprotected. Hence, the parabolic solutions of Figure 8 and the table (Fig. 9) represent maximum protection capabilities of the cone of protection with the panel scale protection configuration. The small ellipse in Figure 11 shows the cone of protection intersection for $\alpha = 40^{\circ}$, $\beta = 45^{\circ}$, and L = 0.74m.

2.2 Lightning Rod Protection at the Bay or Billboard Scale

In this system a longer lightning rod is placed at the center (or end) of each bay or billboard making them 14.69m apart. The mathematical description here is identical to that for the panel scale system (2.1). Only sizes are different. Figure 10 illustrates the billboard scale system.

FIGURE 8

THE INTERSECTION OF THE CONE OF PROTECTION WITH A RECTENNA PANEL (THE CURVED LINES) SHOWN IN THE PLANE OF THE PANEL. LIGHTNING ROD LENGTHS = $\frac{1}{4}$, $\frac{1}{2}$ AND 1 TIMES THE PANEL WIDTH ARE SHOWN PROJECTED VERTICALLY ONTO THE PANEL.

PARABOLIC TYPE SOLUTIONS

UNPROTECTED AREA ROD_LENGTH_IN_METERS UNPROTECTED_AREA_IN_% X_ENHANCEMENT_FACTOR

FIGURE 9

FRONT

SIDE

FIGURE 10

BILLBOARD SCALE LIGHTNING PROTECTION SYSTEM

To illustrate the cone of protection concept for this configuration we use as an an example, $\alpha = 40^{\circ}$, $\beta = 45^{\circ}$, and L = 7.35m (= 1/2 billboard width). The resulting intersection is a portion of an ellipse and is shown on Figure 12. Even if these long (7.35m) lightning rods were placed every 14.69m, a significant fraction of the rectenna (6.7% or when weighted by enhancement factor 18%) is unprotected (i.e. is not inside a cone of protection).

Furthermore, there are serious mechanical problems associated with supporting these long (i.e., over 22 feet) lightning rods. We think these examples are sufficient to demonstrate that configurations employing fewer lightning rods at longer spacing decreases protection and creates structural problems that ultimately will increase the total materials requirement.

For example, if we were to increase the length of the lightning rod in this configuration to the point that it could offer protection to the billboard in front of the one on which it is mounted (i.e. to the south), then with the appropriate phasing of rods between rows of billboards we could get total protection in the cone of protection context. The length of the rods would need to be 12m in order to provide this coverage.

2.3 The Distributed Lightning Protection System

The distributed lightning protection approach replaces the many lightning rods with a continuous horizontal conducting structure, as depicted in Figure 13. The region of protection now becomes the volume beneath two planes whose intersection is the horizontal protecting structure. This protection tactic is essentially the one employed by the power transmission companies. The angle between the protecting planes and vertical is variable; 45° is thought to be adequate but some designs use 30° for extra protection. This line is called the "static" by the power companies and this term is used here for convenience.

Figures 7 and 8 provide the correct geometric considerations for the distributed lightning protection if we interpret the end point of the lightning rod to be the location of the static. We note that the figures apply anywhere along the rectenna, not just in the specific locations required by the lightning rod analysis.

For consistent comparisons with the other lightning rod systems we will use $\alpha = 45^{\circ}$. Since $\alpha < 45^{\circ}$ for rectennas below 40° latitude, the top edge of the rectenna is protected by the static for any value of L, the displacement distance. If we try to use a smaller, more conservative value for β , we will run into problems in protecting the top edge of the rectenna with any system tht does not cast a radio shadow on an active rectenna surface. The design constraint that we will use to specify L will be that the southward plane of protection intersect the rectenna surface at the base. Therefore,

$L = 12.2m \tan (45^{0} - \alpha).$

For α in the range 45° to 30°, L has the range of values Om to 3.3m. This simple analysis ignores the protecting capability of the immediate southward row of the rectenna on the base of the row being considered. When these additional protective effects are considered we find that:

 $L = 6.1m (1 - tan \alpha)$ For α in the range 45 ⁰ to 30 ⁰, L now has the range 0m to 2.6m. Figure 13 gives the configuration of the distributed lightning protection system for $\alpha = 30^{\circ}$, which represents the most difficult situation to protect. In this situation the static is displaced by 2.6 meters from the top edge of the rectenna; note that the 45° planes of protection provide total coverage of the rectenna.

We wish to emphasize that the set of horizontal statics not only provide total protection in the sense that lightning flashes are expected to hit the statics instead of the active rectenna surfaces but that this system also reduces the induced voltages and currents in the rectenna. We estimate that induced charges, currents, and potentials are reduced by 1/2 by the static protection system.

FIGURE 11

PANEL SCALE PROTECTION COMPARED TO BILLBOARD SCALE PROTECTION SHOWN AS IN FIGURE & EXCEPT HERE ON A BILLBOARD.

FRONT

SIDE

FIGURE 12

DISTRIBUTED LIGHTNING PROTECTION SYSTEM

15

FIGURE 13

DISTRIBUTED LIGHTNING PROTECTION SYSTEM ILLUSTRATING FORWARD AND BACKWARD PRO-TECTION FOR SMALL INCLINATION ANGLES

II. <u>SIMULATIONS OF LIGHTNING STRIKES TO THE SPS RECTENNA WITH AND WITHOUT</u> PROTECTION

A series of experiments were performed in our electrostatic test chamber with a scale model of the SPS rectenna. The experiments consisted of exposing the model rectenna to a series of high voltage discharges produced with a Tesla coil.

The strikes to the rectenna were photographed using time exposures in a darkened room. A wire from the upper plate conducted the discharge to the vicinity of the model rectenna and provided us with a limited control over the area of the strike. This allowed us to keep the strikes near the volume in focus by the camera.

Different areas of the model rectenna were protected by different systems, and one area was unprotected. The following paragraphs describe samples of these experiments:

1. The Unprotected Rectenna

;

Most of the strikes were to the upper edge of the billboard because of the larger enhancement factor at that point. Several strikes to the billboard face occurred.

In Figure 14, we see two strikes to the unprotected billboard section, one of which is to the billboard face. Notice that these strikes are perpendicular to the face when near the face; we would anticipate this because the equipotential lines are nearly parallel to the face here.

In Figure 14, we also see for comparison the three lightning protection systems modeled. To the left is the billboard scale system; to the right is the panel scale system; and behind the flashes is the distributed lightning protection system.

2. The Panel-Scale Protection System

The next three figures are examples of strikes photographed on the section of the model rectenna that was protected by the panel-scale lightning protection system.

In Figure 15, we see two strikes on the same billboard, both of which terminate on the panel-scale lightning rods.

Figure 16 shows two strikes from a different view going to two different billboards. The panel-scale protection system here is seen to protect only the front billboard. Protection is probably greater for real lightning because in our experiments we artificially bring the "leader tip" very close to the billboard with the wire.

Multiple strikes to the panel-scale protection system are seen in Figure 18. One of the strikes goes directly to the billboard face. this type of failure will occur in nature, but with lower probability than illustrated here.

17

3. The Billboard-Scale Lightning Protection System.

Two sets of experiments were made with the billboard-scale lightning protection system. The one illustrated in Figure 19 corresponds to rods of length 7.35m. (A second series of strikes were made with rods cut to one-half of this length, but these were photographed in color and are not suitable for this report.) Figure 19 illustrates the capability of these long rods to direct lightning to the desired point.

In Figure 20, we have a side view of a billboard-scale protector taking a strike and protecting the billboard-face. Figure 21 illustrates the "hole in the armor" of the billboard-scale lightning protection system. Two flashes strike the protection system, but a third strikes the billboards between two protectors, as predicted in Figure 12. With real lightning this is less likely to happen, but it can and will occur.

4. The Distributed Lightning Protection System.

The displacement distance of the static from the billboard was scaled from 0.74m to make it correspond to the height of the panel-scale protection system. Fewer failures-to-protect were observed with this system but they did occur. With real lightning, they would be even less likely to occur.

In Figure 22, we see two strikes to two different billboards from the side view. Figure 23 shows two strikes to the same billboards, which were rovided with a distributed lightning protection system. One strike is to the terminal support rod at the billboard edge, which is the preferred point of strike. The other strike goes to the horizontal static line between the terminal support rods.

20

FIGURE 15

23

FIGURE 21

III. GROUNDING CONSIDERATIONS FOR THE PROPOSED LIGHTNING PROTECTION SYSTEM

The thundercloud charges induce a large surface charge on the rectenna below the cloud; during the stepped leader period even larger surface charges are induced on the region below the leader tip. Most of the current flowing during the return strokes of the lightning flash must be distributed by the grounding system to connect with the induced surface charges. If adequate paths for these currents are not planned and provided, the lightning will make its own paths. Most of the induced surface charge will reside on the horizontal statics of the recommended distributed lightning protection system. The primary grounding system described here is to provide low impedance paths for the redistribution of the induced surface charges and the part of the lightning charge that resides on the rectenna surface.

1. Primary East-West Grounding

It is absolutely necessary that the horizontal statics have a good low impedance connection at billboard edges. The static should appear to be a continuous very low impedance conductor in the east-west direction, as illustrated in Figure 24.

2. Primary North-South Grounding

It is also necessary that the statics are mutually grounded in the northsouth directions; there are two methods of achieving this:

2.1 Periodic connections north-south at the level of the statics. If these north-south statics are aligned along the billboard edges, then there will be little power loss due to microwave shadows (See Figure 24.)

2.2 Interconnect grounding in the north-south direction at the surface or sub-surface level (see figure 25) can also be used, but this approach creates a higher impedance to north-south currents on the static system.

2.3 A surface level grounding network is required in addition to the primary static grounding network. The surface network must handle the redistribution of induced charges on the rectenna surfaces and power distribution systems and it provides a safe working environment at the surface level. East-west continuity with low impedance connections must be provided at the base of the rectenna support structures, and north-south continuity with low impedance connections as discussed in 2.2 and illustrated in Figure 25 must be provided. Figure 26 highlights the surface level grounding network.

2.4. Interconnections between the primary and surface grounding networks should be provided by the vertical conductors located at every billboard upper corner; these are the same structures on which are mounted the terminals and supports for the statics. The vertical interconnections are highlighted in Figure 27.

2.5 The ultimate or final component of the grounding system is the tiein to Earth ground. At regular intervals in the rectenna a deep earth grounding rod must be driven into the soil to make good contact with a conducting soil for earth ground 28 The organization of the earth grounding system should be along diagonals, as illustrated in Figure 28. Here we see that the placement of earth ground at every fourth billboard but on a diagonal produces a grid such that lightning striking the primary grounding network will never have to travel more than 30 meters along the east-west conductors before finding a ground, or 32 meters along the north-south conductors (for a rectenna with a 40° inclination angle).

Ξ

FIGURE 24

FIGURE 25

THE SURFACE-LEVEL GROUNDING NETWORK

FIGURE 28

IV. MATERIALS AND SPECIFICATIONS FOR LIGHTNING PROTECTION

It is premature to specify the final form for the materials for the lightning protection system. We think that the system should be integrated into the structural design of the rectenna itself; in this case many other considerations are necessary in addition to the capability to conduct lightning currents. The data displayed in Figure 29 (H. Baatz, Protection of Structures, in Lightning Vol. 2, ed. by R.H. Golde) is useful for order-of-magnitude estimates of the lightning current requirements.

Example: If the design permits a 100° C temperature rise in an aluminum member carrying 10° Amps for 10° seconds, we need approximately 3 mm² crossectional area of aluminum material in the conductor. Note that the recommended crossections for building codes are larger (~ 80 mm²) indicating designs for lower temperature operation plus safety margins.

The lightning conductor need not be solid. From a structural point of view a tubular or other extruded shape would be preferable. Such configurations are compatible also with the lightning protection recommendations.

Specific values of materials for wire

Material	Steel	Copper	Aluminium
Density (g/cm ⁻³)	7.7	8.92	2.7
Electrical resistance ($\Omega \text{ mm}^{-2} \text{ m}^{-1}$)	0.17	0.0178	0.029
Heat (cal $^{\circ}C^{-1}g^{-1}$)	0.115	0.093	0.023
Melting point (°C)	1,350	1,083	658

			Dime	nsion
Installation components	Material	Cross-section (mm ²)	Rod (mm, radius)	Strip (mm × mm)
Air termination	Steel, galvanized	50 (25)ª	8	20 × 2·5
Rods up to 0.5 m long	Steel, stainless	110	12	30 × 3∙5
Down conductors	Copper	50 (16)ª	8	20 × 2•5
Conductors in ground	Aluminium ^b	80 (25)ª	10	20 × 4
Sheet metal	Steel, galvanized Copper Aluminium, Zinc Lead			0·5 mm 0·3 mm 0·7 mm 2.0 mm

^a Lowest cross-sections used in some countries. ^b Not for use below ground.

Temperature rise of conductors as function of current square impulse per cross-section square; Cu = copper, Al = aluminium, ST = steel, CRS = corrosion-resistant steel.

V. ESTIMATE OF POWER LOSS FROM THE BEAM

A rough <u>maximum</u> estimate of the power loss from the microwave beam due to the lightning protection devices can be obtained by assuming that the microwave shadow cast by the static lightning protection system is twice the crossectional area of the devices. We assume that the conductors are 2 cm wide of 1 mm thickness tubular material, providing 60 mm² of crossectional area for conducting. The assumed shadow of these structures is approximately 0.6% of the rectenna area (see Figure 30.). This is a maximum estimate of the loss.

VI. MICROWAVE DIODE FAILURES DUE TO INDUCED CURRENT TRANSIENTS

The 25 W S GaAs diodes used in the design of the SPS rectenna have not been produced and no failure data is available for these devices. In order to obtain estimates of failure power of the diodes in the design, we used the specification data for the HP5082-2824 microwave diode and scaled the characteristics to 25 W using the "Wunsch relationship" described in the references below. We also obtained advice directly from Dr. D.C. Wunsch regarding the extrapolated power failure current.

- 1. Defense Department Report D224-13042-1 EMP, Susceptibility of Semiconductor Components, dated September, 1974.
- 2. Defense Department Report D224-10022-1 EMP, Electronic Analysis Handbook, dated May, 1973.
- 3. Defense Department Report D224-10019-1 EMP, Electronic Design Handbook, dated April, 1973.

Figure 31 shows the predicted failure power for 25 watt diodes, as a function of pulse width.

PULSE WIDTH - MICROSECONDS

FIGURE 31

VII. COMPUTER SIMULATION OF ELECTROSTATIC FIELD AROUND AN SPS RECTENNA

The electrostatic fields produced by the charges on the lightning channel induce charges on the rectenna and on the lightning protection conductors. Changes in this electrostatic field require a redistribution of charge on the rectenna system; the resulting currents can cause diode failure even with a lightning grounding system in place. One output of the computer simulation of the electrostatic field around the SPS rectenna is an evaluation of the induced current on the rectenna with and without the recommended lightning protection equipment.

An additional output from the computer simulation is the potential around the rectenna billboard enabling us to estimate the enhancement factors of the electric field due to the billboard shape.

The algorithm used in the simulation computes an array of values for the potential around the middle of five infinitely long billboards. We assume here that the contribution to the local potential from billboards further away is ignorably small. The surface charge distribution on the billboards is simulated with ten infinitely long line charges evenly spaced along the billboard. The value for the line charges is determined interactively with the computer to produce a zero potential contour that has the same shape as the billboard. Figure 32 illustrates this simulation.

In order to compute the potential, we will need U(x,y), the electrostatic potential at a point (x,y) in free space, where the coordinate system is such that the line of electrical charges giving rise to the potential is located at the origin. If we call the y-coordinate the height h, then U(x,H) is the electrostatic potential at x and h of a line charge λ (coulomb/meter) at a height d directly above the point x = 0. There is also a contribution to U from the image charge. Thus,

$$U(x,h) = -\frac{\lambda}{2\pi\epsilon_{0}} \ln \left[\frac{x^{2} + (h - d)^{2}}{x^{2} + (H + d)^{2}}\right]^{1/2}$$

From this, the potential distribution around the rectenna may be calculated. Let U(1,h) be the potential at x = 1 and y = h due to a periodic system of line charges simulating the rectenna (see Figure 31.) We then have that

$$U(1,h) = \frac{N_{i}}{i=1} \frac{M_{i}}{j=1} \left(-\frac{\lambda j}{2\pi\epsilon_{0}} \right) \ln \left[\frac{(1 - L[i - 1] - X_{j})^{2} + (h - sX_{d})^{2}}{(1 - L[i - 1] - X_{j})^{2} + (h + sX_{j})^{2}} \right]^{1/2},$$

where the free-space value for the dielectric constant is assumed and where

i = Billboard number, j = Line charge number on billboard i, s = Slope of billboard (= tan \alpha), M = Number of line charges (= 10), N = Number of billboards (= 5).

SIMULATION OF SPS RECTENNA WITH LINE CHARGES

In the presence of a uniform electric field of 100,000 volts/meter (directed upward), ten line charges have been selected to produce the array of values shown in Figure 33. Three potential contours have been sketched (zero, 10,000 V, and 100,000 V) around the ten line charges on the billboard. The zero contour follows closely the position of the billboard surface, as required by the simulation algorithm. Note how closely spaced the contours are at the top edge of the billboard. Electric field enhancement factors of at least 6.5 exist in this region based upon our simulations. Higher resolution simulations would be required to refine the enhancement factor estimates.

The values obtained for the 10 individual line charges found for the solution shown in Figure 33 are (in μ Coul./m):

0.36, 0.465, 0.572, 0.679, 0.924, 1.02, 1.14, 1.78, 2.91, 4.14.

We can convert these to a surface charge density by dividing each value by the billboard distance represented by the line charge. The first line charge serves approximately $3/2 \left(\frac{12.24 \text{ m}}{10}\right)$; the last line charge serves $1/2 \left(\frac{12.24 \text{ m}}{10}\right)$; and all others are associated with a length $\left(\frac{12.24 \text{ m}}{10}\right)$. Figure 34 is a plot of charge/unit area (μ Coul./m²) on the billboard as a function of length (northward) along the billboard surface.

When an additional line charge in placed at the position of the lightning static, and all of line charge values are adjusted to the new configuration, we find the simulated potential function around a protected billboard - Figure 35. The placement of the static in this example is based upon the discussion in Section I.2.3., with L =0.98m, corresponding to $\alpha = 40^{\circ}$. The charge/unit length for the static is 4.6 μ Coul./m. The charge/unit lengths for the ten billboard line charges in (μ Coul./m) are:

0.315, 0.47, 0.51, 0.57, 0.87, 0.89, 0.90, 1.35, 1.78, 2.1. These line charges may be compared with the unprotected billboard charges corresponding to the solutions of Figure 35. The protected billboard charges approach approximately one-half of the corresponding unprotected charges.

The line charges used to simulate the rectenna are normalized to a charge/unit area through division by the associated lengths, as previously described, to obtain the induced charge distribution on the protected rectenna billboard.

Figure 36 is a plot of charge/unit area in μ Coul./m² as a function of the distance (northward) along the billboard face.

-2E2	-2E2	-2E2	-4E5	-4E5	-4E5	-4E5	-4E5	~4E5	~3E5	~3E5	-3£5	-3E5	-3E2	-3E5	
-4E5	-4E5	-4E5	-4E5	-4E2	-4E5	-4E5	-4E2	~3E5	±3€2	-3E5	-3E5	-2E2	~2E5	~3E5	
~4E5	-4E2	-4E2	~4E5	-4E5	-4E5	-4E5	-3E2	-3€5	-3E5	-3E5	-2E5	-2E2	~2E5	~2E5	
~4E5	~4E5	-4E5	-4E5	-4E2	~4E5	~3E5	-3E2	~3E2	~3E5	-2E2	-2€2	~1€5	<u>~1E5</u>	-2E5	
~4E5	-4E5	-4E5	-4E5	-3€5	-3£5	~3E5	~3£5	-3E2	-2E2	-2E5	~1E5	155		~255	
-4E5	-4E2	-3€5	-3E2	~3E2	~3E5	-3E2	-3E2	-2E2	⁻2€5	~2E5	TIEF	-6E4		~1E5	
-3E2	-3E2	-3E2	-3E2	-3€2	-3E2	-3E2	-2E2	-2E2	~2E5	15	-7E4	-25		~1E5	
-3E2	-3E2	-3E2	-3E2	~3€5	-3E2	~2E5	-2E2	-2E2	-1E5	9E4	-3E4		AE4	~1E5	
-3E2	-3E2	-3E2	-3E2	-3E2	~2E5	-2E2	-2E2	-2E2	150	-7E4	714	E A	-5E4	-1E5	
~3E5	-3E2	-3E2	-3E2	~2E5	-2E2	-2E2	-2E2	_1€5 "	9E4	-4E4		A	-5E4	-155	
-3E2	-3E2	-3€5	-2E2	-2E2	~2E2	~2£5	-1E2	100	~7E4	13	7E3	13	-2E4	1E5	
-2E2	-2E2	-2E2	~2E5	-2E2	-2E2	-2E2	-1E5 🎤	9E4	"5E4 🖌	FE	8E3	2E4	-2E4	-9E	
-2E2	-2E2	~2E5	-2E2	-2E2	-2ε2	-1E5	-145	-7E4	-25	JE3	23	-2E4	~5E4	-9E4	100.000 VOLT
T2E5	~2E5	-2E2	-2E2	- 2ε2	-1E2	-1E5	9E4	-5E4	12	3E3	AE3	-3E4	~5E4	-9E4	
-2E2	~2E5	-2E2	-2E2	-1≅5	~1E5	745	-7E4	-3E4		157	-955	-3E4	-5E4	-8E4	POTENTIAL
-2£2	-2E2	~2E5	-2E2	-1E2	155	-8E4	-2E4	-14/	5E3	7,53	- EA	-3E4	-2E4	-8E4	
~2E5	-2E2	-2€2	-1E2	-1E5	9E4	-6E4	-3E4		2E3	-4E3	F1E4	-3E4	-2E4	-7E4	
~2E5	-1E2	-1E5	-1E2	150	-8E4	-2E4	-254	EE4	552	-6E3	~2E4	-3E4	-2E4	-7E4	
-1E2	-1E2	71E5	155	9E4	-6E4	-3E4	6E3	7E3	JE2	-7E3	-2E4	~3E4	-2E4	-7E4	
-1E2	-1E2	-1E5	754	~7E4	-2E4	-154	E3	4E3	-2E3	-9E	-2E4	-3E4	~5E4	-6E4	
-1E2	-1E2	-120	-8E4	~6E4	-3E4	2E3	7E3	2E3	-3E3	-913	-2E4	-3E4	-4E4	~6E4	
~1E5	TIEF	-8E4	~7E4	~5E4	-25-	2.2	6E3	1E7	-3E3	-1=4	~2E4	-3E4	"4E4	~6E4	
TER	-9E4	-7E4	-6E4	-3E4	357	2E3	4E3	6 2	-4E3	1E4	-2E4	-3E4	-4E4	-25E4	
-8E4	~8E4	~6E4	~4E4	-2E4		4E3	3E3	7 E1	-4E3	tje4	~2E4	-3E4	-4E4	-5E4	
-7E4	-6E4	~5E4	~3E4	74	AE3	4E3	2E3	6E2	-2E3	-1E4	~2E4	-2E4	-3E4	-4E4	
~6E4	~5E4	-4E4	-2E4		3E3	3E3	2E3	~1E3	~5E3	1E4	~2E4	-2E4	-3E4	-4E4	
-6E4	-2E4	-3E4	-14	3	3E3	3E3	1E3	-1E3	-2E3	- 153	, ~1E4	-2E4	-3E4	~4E4	
~5E4	~4E4	-2E4	- 6EY	5E3	3E3	2E3	6E2	-1E3	~4E3	-8E	-1E4	~2E4	-2E4	~3E4	
~4E4	-3E4	-184	-12	3E3	2E3	2E3	4E	-2E3	-4E3	-8E3	-1E4	~2E4	-2E4	~3E4	
~3E4	-2E4	-5E3 (∕3E3	2E3	2E3	1E3	2 2	-1E3	74E3	-7E3	E1E4	~1E4	~2E4	-2E4	•
~2E4	_184	-2E7	3E3	2E3	2E3	1E3	F 1	~1E3	~3E3	-6E3	-94	-1E4	-2E4	-2E4	
-2E4	-4E3		2E3	2E3	1E3	7E2	1 551	-1E3	-3E3	-2E3	~7E3	JEL.	~1E4	-2E4	
JAN .	A	1E3	2E3	1E3	9E2	5€2	7E1	-9E2	-2E3	-3E3	~5E3	-7E3	953	-1E4	10 000
-8E3	1=5	1E3	1E3	8E2	6E2	3E2	7E1	-9E5	-1E3	~2E3	-4E3	~5E3 -	~6E3	-8E3	TOY DOD VOLT
- 457	3E2	7E2	5E2	4E2	3E2	2E2	-4E1	-3€2	~7E2	-1E3	-2E3	-2E3	-3E3	- 4E3	POTENTIAL
950	0E0	0E0	0E0	0E0	0E0	0E0 /	0E0	0E0	0E0	0E0	0E0	0E0	0Ę0	0E0	
					ZEF	O POT	TENTI	AL					•		

LOCATION OF LINE CHARGES SIMULATING BILLBOARD

FIGURE 34

	-4E2	-4E5	-4E5	-4E2	-4E5	-4E5	-4E5	-3E2	~3E5	-3E2	-2E5	-2E2	<u>~1E5,</u>	⁻2Ĕ5	~2€5	
	-4E2	-4€5	-4E5	-4E5	~4E5	~4E5	-3E2	-3E5	-3E2	-2E2	~2E5	~1E5	1EA	C 4 E C	-2E2	
	-4E2	~4E5	-4E2	-4E5	-4E5	-3E2	-3E2	~3E5	-3E2	~2E5	-2£5	-115		-764	-2E5	
	-4E2	~4E5	-4E5	-3E5	-3E5.	-3E5	-3E5	-3E5	-2E2	~2E5	~2E5	9E4	-3E3	TAEA	TJE5	
	-3E2	-3E2	~3E5	-3E2	-3E5	-3E2	-3E5	~2E5	-2E2	~2E5	-1E5	-7E4	-154	12.	1E5	
	-3E2	-3E2	-3E2	~3E2	-3E2	-3E2	-3E5	~2E5	~2¤5	±2E2		-5E4	657		1E5	
	~3E5	-3E2	-3E2	-3E2	-3E2	~3E5	-2£2	-2E2	-2E2	~1E5	-8E4	-JEA	4E3	EA .	£5	
	-3E2	-3E2	-3e2	-3E2	-3E2	-2E2	-2E2	~2E5	-1E5	-1-0	-7E4	7-4	224	3E4	-94	100 000
	-3E2	-3E2	-3E2	-2E2	~2E5	-2E2	-2E2	-2E5	-1£5	9E4	~5E4	-375	E 4	-"3E4	-9E	100,000 VOLT
	-3E2	-3E2	~2E5	^2E5	~2E5	-2E2	-2€2	-1E2)	-100	~7E4	-35	352	- #3/	-4E4	-8E4	POTENTIAL
	-72E2	-2£2	~2E5	72E5	-2E2	~2E5	-2E2	~1E5	-9E4	-2E4	417	7E3	16	~4E4	-8E4	
	~2E5	-2€2	-2£5	-2E2	-2E2	-2E2	-1e2	715	-7E4	-4E4	DE3	7E3	- jE4	~4E4	-8E4	
	-2E5	~2E5	-2E2	-2E5	~2E5	-1E2	-1£5	-9E4	-9e4	-7-9	SE3	273	2E4	~4E4	~8E4	
	-2E2	~2E5	-2E2	-2E2	-1E2	-1E2	-1-5	-7E4	-4E4		1E3	3E3	~2E4	-4E4	~7E4	
	-2E2	-2E2	-2E2	-2E2	~1E5	-1E5	-9E4	-9E4 ·	-3EA		25	~7E	-2E4	-4E4	-7E4	
	-2E2	-2E2	-2E2	~1E5	-152	-5	~7E4	-4E4	H.	<u>3</u> ⊑3	2E3	7 4	-2E4	-4E4	~7E4	
	-2E5	~1E5	-165	-1E5	-15	-8E4	-6E4	-3E4	157	8E2	° -4E3	1E4	-3E4	-4E4 .	-9ea	
	-1E5	-1E5	-1E2	-1E5	9E4	~7E4	-4E4				-2E3	~1E4	-3E4	-4E4	-9E4	
	15	15	-165	0	-8E4	-2E4	-3E4		7E3	6E2	-7E3	~2E4	-3E4	-4E4	-9e4	
	-1ES	15		8E4	-6E4	-484		ØE3	4E3	-1E3	-7E3	-2E4	-3E4	-4E4	-2e4	
	-115 		- 984	-7E4	-5€4	-3E4		7E3	3E3	-2E3	-8EZ	-2E4	-3E4	-4E4	~5E4	
10 ⁵		₩ 9E4	854	654	424			7≞3	2°-3	-3E3	-8-3	~2E4	-2E4	-4E4	-584	
10	954	854	6-4	554	-3E4		353	5E3	146	-353	-9-3	-2E4	-2E4	-3E4	-4E4	
	854	/E4	5⊧4 ∽.⊧.	464	25.4		4E3	3E3	1 2	-4E3	-9-3	-1E4	~2E4	-3E4	-4E4	
	/54	654	454	354	Ľ	4=3	4 <u>⊨</u> 3	2E3	\mathbf{I}^{2}	4E3	-846	~1E4	-2E4	~3E4	-4E4	
	614 	554	454 ~754	264		2E3	353	2E3	E ^{E2}	-4E3	-8£	-1E4	-2E4	-3E4	-3E4	
	-454	454	15⊑4 -a≂≉			25	253	15	862	453	8F3	-1E4 ·	-2E4	-2E4	-3E4	
	464	3⊑4 ‴954	-2-9	1	ີ 3⊏3 757	253	2=3	852	163	453	7E3	1=4	-2E4	-2E4	-3E4	
	344 -751	254	-757		ე≏კ 757	253	253	6=2 750	153	5±5	6⊧3 -/==	E4	1=4	-2E4	-2E4	
	354 7754	-	3-3	4=3	353	253	153	3=2 0=0	15	<u>3</u> ≞3	653	YES	164	2E4	-2E4	
	254	- 177		453	253	25	153	252	153	5⊐£	-5±3	/E.j	- EA	-1E4	-2E4	
4	-1 ²⁴		8-2	ರ್ಧರ ೧೯7	253	1=3	852	152	952	2E3	453	653	853	124	-14	
10*	-7F7		157	2-3 1F7	157	1-0	052	451	752	253	15 - 257	423	623	853	164	10,000 Volt
	-252	750	050	150	123	752	452		0"2 TOED	153	2=3	ე⊏ე -ინ7	423 -057	5±3	7£3	POTENTIAL
	X	0FA	0-2	0-2 0E0	352 AEA	J⊑∠ ∆E0	252 AEA	350	ZEZ	652 050	153	25	253	<u>კ</u> ⊨კ ი⊏ი	3E3	··· .
0	-V	V-V	0-0	0-0 .	0-0	0-0	VEN	Ar Ar	VEV	0=0	0=0	0=0	0=D	0=0	0r0	
								ZERC)							

POTENTIAL

LOCATION OF LINE CHARGES SIMULATING BILLBOARD

FIGURE 35

FIGURE 36

VIII. COMPUTATION OF LIGHTNING ELECTRIC FIELDS

In section VII, a rectenna was simulated in the presence of a uniform electric field of 100,000 Volts. The induced surface charges derived from the simulation are directly proportioned to the imposed electric field strength.

In this section we describe a computer program that was written to derive values for the lightning-produced electric fields as a function of time and of distance from "ground zero" - the point of strike. We have run the program for a range of lightning parameters obtained from actual measurements reported in the literature.

The program computes the contribution to the electric field from the thundercloud charge center participating in the cloud-to-ground flash, the charge on the lightning channel, and the images of these charges. All charges are allowed to vary with time in a manner consistent with observations <u>[Ter-restial Environment (Climatic) Criteria Guidelines for Use in Aerospace Vehicle Development, 1977 Revision;</u> Edited by John W. Kaufman, NASA Technical Memorandum 78118].

Figure 37 displays the relevant equations and configurations covering the leader phases of the computation.

In Figure 38 the equations and conditions during the return stroke portion are shown. The program used in computing the fields is provided in the appendix.

The material following Figure 38 provides the tabular and graphic data used in these computations for the return stroke phase. These data are contained in Figures (39-44) inclusive.

The output of the computer program is a "blow-by-blow" history of the electrical field at a specified distance from ground zero as a function of time. Figure 45 displays one section of the output from one of the computer runs. This corresponds to a worst-case situation, 10 meters away from the very-severe-model. The units of time are seconds(along the abscissa), and the units of the ordinate are kilovolts per meter.

Table 8.4 in figure 46 provides a summary of the output for the various computer runs. Listed are the peak negative fields, the peak positive fields (when positive fields occur), and the ΔT for the portion of the flash with the peak rate of change of electric field.

These values are our input data to the computation of diode failure when used in conjunction with the induced surface charge results of the rectenna electrostatic simulations.

INITIAL SPECIFICATIONS
TEMPORAL FUNCTIONS:

$$X = Y_{0} - V_{L}T$$

$$Q = Q_{0} - P_{L} (Y - X)$$

$$SOLVE FOR E_{L} (T, D)$$

$$FOR T < T_{L} WHERE$$

$$T_{L} = (Y_{0} - X_{L}) / V_{L}$$

$$X_{L} (\sim 50 \text{ METERS})$$

$$FOR T > T_{L}, E_{L} (T, D) = E_{L} (T_{L}, D)$$

STEPPED OR DART LEADER PROCESSES:

FIGURE 37

49

ł

RETURN STROKE PROCESS:

INITIAL SPECIFICATIONS
TEMPORAL FUNCTIONS:

$$Y = V_{R}T'$$

$$P = \int I dT/Y = 0$$

$$P = -P_{L} = 0$$

$$P = -P_{L} = 0$$

$$P = -P_{L} = 0$$

$$P = \int I dT + Q_{L} = 0$$

$$P = -Q_{L} = 0$$

$$P = -P_{L} =$$

'r'

	Stage	Key Points	Rate of Current Change	Charge Passing
1.	First Return Stroke Surge	t = 0 i = 0 t = 2 μ s i = 200 kA t = 100 μ s i = 7 kA	$\left. \begin{array}{l} \text{Linear Rise} - 100 \text{ kA/}\mu\text{s} \\ \text{Linear Fall} - 193 \text{ kA in 98}\mu\text{s} \end{array} \right.$	0.2 C* ~ 10.2 C
2.	First Stroke Intermediate Current	$t = 100 \ \mu s$ $i = 7 \ kA$ $t = 5 \ ms$ $i = 1 \ kA$	Linear Fall - 6 kA in 4.9 ms	19.6 C
3.	Continuing Current First Phase	t = 5 ms $i = 1 kAt = 55 ms$ $i = 400 A$	Linear Fall - 600 A in 50 ms	35.0 C
4.	Continuing Current Second Phase	t = 55 ms i = 400 A t = 355 ms i = 400 A	Steady Current	120.0 C
5.	Second Return Stroke Surge	t = 355 ms i = 400 A t = 355.002 ms i = 100 kA t = 355.1 ms i = 3.5 kA	$\left. \begin{array}{c} \\ \end{array} \right\} \text{ Linear Rise } \sim 50 \text{ kA}/\mu\text{s} \\ \\ \end{array} \\ \left. \begin{array}{c} \\ \end{array} \right\} \text{ Linear Fall } - 96.5 \text{ kA in } 98\mu\text{s} \end{array}$	~ 0.1 C ~ 5.1 C
6.	Second Stroke Intermediate Current	t = 355.1 ms $i = 3.5 kAt = 360 ms$ $i = 500 A$	Linear Fall - 3 kA in 4.9 ms	9.8 C

.

DETAILS OF A VERY SEVERE LIGHTNING MODEL (MODEL 1)

* Coulomb (C) is the quantity of electricity transported in one second by a current of one ampere.

(MODEL 1) (Note that the diagram is not to scale)

1

52

	Stage	Key Poir	nts	Rate of Current Change	Charge Passing
1.	First Return Stroke Surge	t = 0 $t = 5 \ \mu s$ $t = 100 \ \mu s$	i = 0 i 100 kA i 3.5 kA	$\begin{cases} \text{Linear Rise} - 20 \text{ kA/}\mu\text{s} \\ \text{Linear Fall} - 96.5 \text{ kA in 95 }\mu\text{s} \\ \end{cases}$	0.3 C ~ 4.9 C
2.	First Stroke Intermediate Current	t = 100 μs t = 5 ms	i 3.5 kA i 500 A	Linear Fall - 3 kA in 4.9 ms	9, 8 C
3.	Continuing Current First Phase	t = 5 ms t = 55 ms	i 500 A i 200 A	Linear Fall - 300 A in 50 ms	17.5 C
4.	Continuing Current Second Phase	t = 55 ms t = 355 ms	i 200 A i 200 A	Steady Current	60 C

DETAILS OF A 98 PERCENTILE PEAK CURRENT LIGHTNING MODEL (MODEL 2)

DIAGRAMMATIC REPRESENTATION OF A 98 PERCENTILE PEAK CURRENT LIGHTNING MODEL (MODEL 2) (Note that the diagram is not to scale.)

FIGURE 42

	Stage	Key Points	3	Rate of Current Change	Charge Passing
1.	First Return Stroke Surge	t = 0 $t = 5 \ \mu s$ $t = 100 \ \mu s$	i = 0 i = 20 kA i = 2 kA) Linear Rise - 4 kA/μs Linear Fall - 18 kA in 95 μs	0.1 C ~ 1.0 C
2.	First Stroke Intermediate Current	t = 100 μs t = 5 ms	i = 2 kA i = 300 A	Linear Fall - 1.7 kA in 4.9 ms	5.6 C
3.	Continuing Current First Phase	t = 5 ms t = 55 ms	i = 300 A i = 100 A	Linear Fall - 200 A in 50 ms	10.0 C
4.	Continuing Current Second Phase	t = 55 ms t = 355 ms	i = 100 A i = 100 A	Steady Current	30.0 C

DETAILS OF AN AVERAGE LIGHTNING MODEL (MODEL 3)

.

55

Т

DIAGRAMMATIC REPRESENTATION OF AN AVERAGE LIGHTNING MODEL (MODEL 3) (Note that the diagram is not to scale.) ≡

Section and the sector of the

FIGURE 45

57

ł

···· .,

~

TABLE 8.4

VERY SEVERE MODEL

..

98 PERCENTILE MODEL

AVERAGE MODEL

i.

	Distance	Peak Negative	Peak Positive	∆E/∆T Peak	Peak Negative	Peak Positive	ΔΕ/ΔΤ Peak	Peak Negative	Peak Positive	ΔE/ΔT Peak
	10	-8.5X10 ⁵	2.8X10 ⁶	2.2X10 ⁶	-5.95X10 ⁵	1.81X10 ⁶	6.46X10 ⁵	-5.09X10 ⁵	1.30X10 ⁶	5.68X10 ⁵
	10 m			1.2X10 ⁻⁵			3.00X10 ⁻⁶			2.59X10 ⁻⁵
	50 m	-5.7X10 ⁵	1.7X10 ⁵	4.37X10 ⁵	-3.88X10 ⁵	1.04X10 ⁵	3.59X10 ⁵	-3.10X10 ⁵	6.1X10 ⁴	1.14X10 ⁵
673				2.2X10 ⁻⁵			2.5X10 ⁻⁵			2.50X10 ⁻⁵
8	100 m	-3.49X10 ⁵	2.49X10 ⁴	2.15X10 ⁵	-2.36X10 ⁵	NI / A	1.75X10 ⁵	-1.85X10 ⁵	N1/A	5.47X10 ⁴
	100 11			2.2X10 ⁻⁵		N/ A	2.5 X10 ⁻⁵	- 	N/A	3.5 X 10 ⁻⁵
		-8.94X10 ⁴	NI / A	3.79X10 ⁴	-6.15X104	NI/A	2.96X104	-5.12X104	NI / A	NT / A
	500 11		N/A	3.2 X10 ⁻⁵		N/ A	4.5 X 10 ⁻⁵		N/A	N/A
	1000 M	-5.35X104	N/A	1.69X10 ⁴	-2.61X10 ⁴	N/A	N/A	-3.29X104	NI / A	NI / A
			N/A	4.2X10 ⁻⁵		N/ A	N/A	N/A	N/A	

.

IX. COMPUTATIONS OF DIODE FAILURE

THE REAL PROPERTY IN

We are now to the point of having generated all of the data that are required to evaluate the conditions under which the microwave rectifier diodes will fail due to induced currents from nearby lightning flashes. For a given AE and AT (from Table 8.4) we obtain from Figure 31 the power required for diode failure and from Figure 32 the induced charge/unit area on the rectenna surface. We assume that a diode designed to operate at 67 V will have a breakdown voltage of about 100 Volts.

The surface area of the rectenna that has an induced surface charge of the size sufficient to cause diode failure is then computed from comparison with areas of the rectenna served by individual diodes and by series strings of diodes. Sample computations follow.

> SAMPLE COMPUTATION OF DIODE FAILURE (98TH PERCENTILE - 10 METER - NO PROTECTION)

- 1. 98 percentile model 10 meters: $\Delta T = 3 \times 10^{-6}$ and $\Delta E = 6.46 \times 10^{5}$.
- 2. Expected diode failure power from Figure 30: 250 Watts.
- 3. Energy dissipated in the diode: 250 Watts x 3 x 1^{-6} s = 7.5 x 10^{-4} Joules.
- 4. Charge transferred across 100 Volts diode breakdown voltage = 7.5×10^{-6} Coulombs.
- 5. From AE in step 1 and figure 37, the induced charge/unit area = 3×10^{-6} c/m² x 6.46 = 19.38 x 10^{-6} c/m².
- 6. From steps 4 and 5, the rectenna area with surface charge equivalent to the charge required to cause diode failure is: 0.39 m².
- 7. Area served by diodes: rectenna center, .

 $\frac{25 \text{ watts}}{230 \text{ w/m}^2} = 0.11 \text{ m}^2; \text{ rectenna edge}, \frac{25 \text{ watts}}{10 \text{ w/m}^2} = 2.5 \text{ m}^2.$

8. Compare 6 with 7: single diode configuration near rectenna center is safe. Single diode configuration near rectenna edge is vulnerable.

- 9. However, the diodes are to be put in series (597 to a string) hence the diodes near the bottom must carry all of the induced current to the entire string. For these bottom-string diodes the area served with respect to the induced charge is: rectenna center, 60 m²; rectenna edge, 1400 m².
- 10. To protect against the 98 percentile flash within 10 meters of ground zero would require fast surge protection diodes (back to back zeners) on all diodes in the rectenna. This extent of protection may not be cost effective; however the considerations in Section X indicate that simpler protection arrangements will probably be effective near the rectenna center.

FAILURES PRODUCED BY THE AVERAGE LIGHTNING FLASH

The situation considered here is the extent of the protection required for an "average" lightning flash if we are willing to accept losses from the extreme cases.

The computation sequence follows the same procedure described immediately above. Here we use data for the average flash from Table 8.4 at a 10 m distance from ground zero.

......

11.01

SAMPLE COMPUTATION OF DIODE FAILURE (AVERAGE FLASH, 10 M, WITH "STATIC" PROTECTION)

From Table 8.4: ΔE = 5.68 x 10⁵ v/m; ΔT = 2.59 x 10⁻⁵s.
 From Figure 6.1: 80 watts.
 80 w x 2.59 x 10⁻⁵ s = 2 x 10⁻³ Joules.
 2 x 10⁻⁵ coulombs.
 From 1 and Figure 38: 1.5 x 10⁻⁶ x 5.68 = 8.52 x 10⁻⁶ coul/m².
 From 4 and 5: Area = 2.35 m².
 Since the rectenna area served by individual diodes even on the edge < 2.5 m, the individual diodes are self-protecting and able to take an "average" lightning flash.

 However, when arranged in a series stack of 597, the diodes at the bottom of the stack must conduct the induced currents for the whole stack. The diodes <u>cannot</u> safely carry these currents.

X. LIGHTNING PROTECTION FOR SERIES DIODE STRINGS

As demonstrated in Section IX, the connection of microwave rectifier diodes in series requires special lightning protection considerations. We cannot make specific recommendations for these protection devices at this time because the rectenna current design is not advanced to the point that allows such detailed analysis. Rockwell International has provided us with an equivalent circuit for the rectenna; a slightly modified form of that circuit is shown in Figure 46. We have assumed that the series connections are to be made at the points indicated by the large spots and that the output filler operates around 30 Hz. A series string of rectenna elements of this design can be protected with a variety of methods. One cost-effective means is a spark gap arrangement incorporated in the diode feedthroughs, or the output filter inductors, or on the billboard configuration itself.

___.

FIGURE 46

ŧ

XI. CLOUD-TO-GROUND LIGHTNING DISTRIBUTION IN THE UNITED STATES

In order to have a working estimate of the hazard presented by lightning to rectennas, we need to know the cloud-to-ground lightning flash density for various possible rectenna sites in the United States. The cloud-to-ground lightning flash density (in #/km² for example) is not a parameter that is measured as a climatological variable. We have found it necessary to use the number-of-thunderstorm days as a proxy variable because it is available as a climatological variable. Figure 47 gives contours of annual number-ofthunderstorm days.

XI.1. Pierce Conversion Formula

Several attempts have been made to derive a conversion formula to convert thunderstorm days into the flash density by using lightning flash counters in research areas for correlation with the count of thunderstorm days. The best of the various conversion formulas is that due to E.T. Pierce ("A Relationship Between Thunderstorm Days and Lightning Flash Density," <u>Trans. AGU, 49</u>, 686, 1967.) The Pierce formula (as does most others) has a quadratic term, which reflects the relationship between frequencies of local storms and storm intensity. In addition, the formula utilizes the monthly thunderstorm days as opposed to the annual average in order to incorporate seasonal effects in the conversion formula.

This formula is

 $q_M^2 = aT_M + a^2T_M^4$,

where: $T_M = monthly number of thunderstorm days and q is the monthly ground flash density (<math>\#km^2/Mt$.) The parameter a is,

 $a = 3 \times 10^{-2}$ If σ is the annual ground flash density (# km⁻²/yr.), then

 $\sigma = \begin{cases} 12 \\ M=1 \end{cases} \sigma_{M}.$

XI.2. Climatological Data -- Number of Thunderstorm Days

The inputs needed to compute the U.S. Distribution of ground lightning flash density are: (1) The monthly number of thunderstorm days for all U.S. stations recording these observations, (2) the coordinates of the observing sites, and (3) the computer software to compute the density and display the results geographically.

Items 1 and 2 were obtained from "Local Climatological Data - Annual Summaries for 1977" published by The National Oceanic and Atmospheric Administration on magnetic tape. The geographic plotting software of Item 3 was obtained from The National Technical Information Service, and the computer programming was done by J.L. Bohannon at Rice.
A detailed list of flash density for all of the stations used is provided in the Appendix.

. .

1

....

Note the hot spots on the contours in Figure 48 that result when stations are located near geographic features that promote local thunderstorms. There are probably other similar hot spots in the U.S. that do not show up on this display because of the absence of an observing station nearby.

and the second sec

Т

APPENDICES

Computer programs developed under this contract.

All programs are in FORTRAN H, unless otherwise specified. All of the programs were run on an IBM 370/155 and/or an Itel AS/6 computer.

「「「「「「」」

Apendix A

The second s

Computer Program PANEL: A Computer Model of the SPS Plasma Interaction

The following pages are the listing of the program "PANEL," written to model the interaction of a high voltage solar array with an ambient Maxwellian plasma. The program was originally written by Dr. Lee W. Parker and was modified for application to the SPS problem by David L. Cooke.

xx XX XX XX XX XX XX XX XX XX XX XX XX XX XX	xx xx <td< th=""><th>XX XXXXXXX XX XX XX XX XX XX XX XX XX XX XX</th><th></th><th></th><th></th><th></th></td<>	XX XXXXXXX XX XX XX XX XX XX XX XX XX XX XX				
x x x x x x x x x x x x x x x x x x x				**************************************	XXXXX XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	XX
	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX		x x x x x x x x x x x x x x x x x x x		•	
PRINTER3 A END PRINTER3 A A END PRINTER3 A A END PRINTER3 A A A A A A A A A A A A A A A A A A A	JOB 2404 BIN 7 JOB 2404 BIN 7	COOKE 43707550 COOKE 43707550	PS 4:02:00 PM 27 MA PS 4:02:00 PM 27	R 79 PANEL R 79 PANEL IR 79 PANEL		

.

Α2

LEVEL 21.8 (JUN 74)

i -

i –

OS/360 FORTRAN H

			COMPILER	OPTIONS -	NAME	ΞΞ ίČΕ,	MAI Ebc	N D Î	0 P 1 C • 1	「≠(\DL)2, 15	ιI,	NE		NT: ECI	=6 K,	6		ZĘ		90) 9	001 NDE	Ö.	IT.	, N		D , N	IOX	RE	F
	TSN	0002	C C	SOLAR P	ANEL CP/NE	PRO	BLE I.N	M PT	S . !	4 A P	MB	i s M	IE,	K	MA	χ.	ХP	Τ.	Y F	۰T	• A i	L1,	, B 1	E 1	, E	۷,	SMA	CH	,	
	1 S N	0003	l	1 TVULTS COMMON/1 1XX/(2080	•CUR •K/[]	, X M E [M , I . V V (20 71	Η.	JJF	γ. Υρ	K.	N	ה	Ţ,	IV	, J	۷,			11	• M •	N	• V	P (3, Q)	.		
	1 S N 1 S N 1 S N 1 S N	0004 0009 0006		2XX(40), COMMON/I COMMON/I COMMON/I	(Y(3) =LD/) CD/P\ INTES)),[((20 /0LT	50, 80, 5,X	20 10) MA 10)	x = H = C(= C H = J			18C				VR IN RT		NF (2 (2 UT	р 0 0 0 0 0	3 0 9 0 9 0		PRF)•9 T1(T,)	K K K K K K K K K K K K K K K K K K K	• SI • SI • SI • SI • SI	КР О РА А,	LS RT ZA	2 (2 ,	2)		
	I SN I SN I SN I SN I SN	0007 0008 0009 0010 0011		DIMENSIO DIMENSIO INTEGER NFCIX,J L=5	ON DI ON VI SKP	TE(=C(4 =IX	20)).1 SKP +11	F(LS *(4) T, JX	JF SKF 1)	=(4 PCC)+I), []*	Kł J.	-)≍	4) (K)	X -	1)													
	I SN I SN I SN I SN I SN	0012 001 0014 0015 0016	10 999 2 999 <u>2</u> 999	M=6 READ(L) 9 FORMAT() WRITE(M 8 FORMAT() READ GE	9999 2044 9999 4241 3000	END B) D SOLA RIC	=99 ATE R P PAR) An Am	DAN EL ETE	TE Ers	LEC	: T R		C 1	FI	EL	D	AN	D	CI	UR	REP	11:	s.	,	20	A4))		
A3	NNNNNNNN NNNNNNNNNNNNNNNNNNNNNNNNNNNNN		Č C 140	READ(L) READ(L) IJ=JJM+ JJ=JJM+ NTOT=II READ(L) READ(L) READ(L) READ(L) READ(L) READ(L) READ(L) READ(L) READ(L) X(NPC, 2) JJM1 = I JJM1 = I JM1	111) 111P= 1JJP= 1JJP= 1JJP= 2222) 2222) 2222) 2222) 110= 1100= 1110	I I P I K CXYPML CCYYML CCYYML CCYYPNT CCYPNT I J I J I J I J I I I I J I I I I I I I I I I I	, II (I) (J) (J) (J) (J) (NTI (J) (NTI (J) (J)	M JIJJKL=K 11	JJI = 1; = 1; = 1; = 1; = 1; S 1; P L		ч ч ч ч ч ч ч ч	/RF	: : : :	JX	V , .	JV	, K	υĸ	! و]	4B)	C ,	MB().	NF	ΡS	, Si	KPC	:0		1
	I SN I SN I SN I SN I SN I SN I SN	0040 0042 0043 0044 0045 0046 0046		CONSTRU IF(SKPR) DD 160 DD 160 JW = MB0 NW = NF0 X(NW,1) X(NW,2)	CT RE =L.E([=]) (= } C=K (I,J) = VR = 1	FLE (LX, (LK, (LK,	С Т О G О I U X K U K	R S T D	14	53																				

.

DATE

0048 0049 0050 0051 0052 0053 0054	160 231	JW = K+MBD NW = NF(I,JW,K) X(NW,2) = 1 X(NW,1) = VRF CONTINUE WRITE(M,231) VRF FORMAT(//1X, REFLECTOR POTENTIAL = ",1PE15.5)
0055 0057 0058	Č 163 118	READ ADDITIONAL FIXED POTENTIALS IF(NFPS.LE.3)GO TO 220 WRITE(M,118) FORMAT(//'ADDITIONAL FIXED POTENTIALS'/
0059 0060 0061 0062 0063 0064 0065 0066	119 117 165	DD 170 NQC = 1, NFPS,4 READ(L,119)(VFC(I), IF(I), JF(I), KF(I), I=1,4) FURMAT(4(E8.0,3I4)) WRITE(M,117)(VFC(I), IF(I), JF(I), KF(I), I=1,4) FORMAT(/4(3X,1PE10.2,3I4)) DO 170 I=1,4 NN = NF(IF(I), JF(I), KF(I)) X(NN,1)=VFC(I)
0067 0068 0070 0071 0072 0073 0074 0075 0076 0076 00778 00778 00778 00778 0078 00	170 220	X(NN,2)=1 CONTINUE CONTINUE JVP=IV+1 JVP=JV+1 WRITE(M,223) (I,XP(I),I=1,IV) WRITE(M,224) (I,XP(I),I=1,IIM) WRITE(M,226) (J,YP(J),J=1,JV) WRITE(M,226) (J,YP(J),J=1,JV) WRITE(M,227) (J,YP(J),J=1,JV) WRITE(M,228) (J,YM(J),J=1,JM) WRITE(M,229) (K,ZZ(K),K=1,KK) WRITE(M,230) (XP(I),I=1,IV) WRITE(M,241)(VP(I),I=1,IV)
0082 0083	111 113	FORMAT(1615) FORMAT(//1X,I3,18H POSITIVE X-VALUES/ 1 1X,I3,18H NEGATIVE X-VALUES/ 2 1X,I3,18H POSITIVE Y-VALUES/ 3 1X,I3,18H NEGATIVE Y-VALUES/ 4 1X,I3,25H Z-VALUES (POSITIVE ONLY)/ 5 1X,I3,33H POSITIVE X-VALUES DEFINING PANEL/ 4 1Y 13,33H POSITIVE X-VALUES DEFINING PANEL/
0084 0085 0086 0087 0088 0089 0090 0091 0092 0093 0093 0094 0095	112234 12234 2222222222222222 2222222222	FORMAT(//1X,27HX-VALUES POSITIVE ON PANEL=/(I3,1PE15.4)) FORMAT(//1X,27HX-VALUES POSITIVE ON PANEL=/(I3,1PE15.4)) FORMAT(//1X,35HX-VALUES POSITIVE OUTSIDE OF PANEL=/(I3,1PE15.4)) FORMAT(//1X,18HX-VALUES NEGATIVE=/(I3,1PE15.4)) FORMAT(//1X,27HY-VALUES POSITIVE ON PANEL=/(I3,1PE15.4)) FORMAT(//1X,35HY-VALUES POSITIVE OUTSIDE OF PANEL=/(I3,1PE15.4)) FORMAT(//1X,35HY-VALUES NEGATIVE=/(I3,1PE15.4)) FORMAT(//1X,37HZ-VALUES NEGATIVE=/(I3,1PE15.4)) FORMAT(//1X,37HZ-VALUES (POSITIVE ONLY) ABOVE PANEL=/(I3,1PE15.4)) FORMAT(//1X,25HARAAY OF PANEL POTENTIALS// 1 15X,3HX =,3X,(8(F8.4,4X)/20X)) FORMAT(/1X,2HY(,I2,2H)=,F8.4,6X,(8(1PE12.4)/20X)) FORMAT(3X, ALL Y, 5X,(8(1PE12.4)/20X))
	0048 0049 0050 0051 0051 0051 0051 0051 0051 0051 00551 000661 0006650 000771 0007756 0007780 00081 000831 000831 000845 000912 000912 000931 000931 000931 000931 000931 000931	$\begin{array}{c} 0048\\ 0049\\ 0050\\ 0051\\ 0052\\ 160\\ 0052\\ 160\\ 0055\\ 163\\ 0057\\ 0058\\ 118\\ 0059\\ 0060\\ 0061\\ 119\\ 0063\\ 117\\ 0064\\ 165\\ 0065\\ 165\\ 0066\\ 0067\\ 0068\\ 170\\ 0068\\ 170\\ 0068\\ 170\\ 0068\\ 170\\ 0068\\ 170\\ 0071\\ 0072\\ 0077\\ 0078\\ 0077\\ 0078\\ 0077\\ 0078\\ 0077\\ 0078\\ 0077\\ 0078\\ 0077\\ 0078\\ 0077\\ 0078\\ 0077\\ 0078\\ 0077\\ 0078\\ 0077\\ 0078\\ 0077\\ 0078\\ 0077\\ 0078\\ 0077\\ 0078\\ 0077\\ 0078\\ 0077\\ 0078\\ 0078\\ 0077\\ 0078\\ 0077\\ 0078\\ 0077\\ 0078\\ 0077\\ 0078\\ 0077\\ 0078\\ 0078\\ 0079\\ 0080\\ 0081\\ 0088\\ 116\\ 0088\\ 222\\ 00086\\ 223\\ 0087\\ 224\\ 0088\\ 225\\ 0086\\ 223\\ 0087\\ 224\\ 0088\\ 225\\ 0090\\ 227\\ 0091\\ 228\\ 0090\\ 227\\ 0091\\ 228\\ 0090\\ 227\\ 0091\\ 228\\ 0090\\ 227\\ 0091\\ 228\\ 0090\\ 226\\ 0090\\ 227\\ 0091\\ 228\\ 0090\\ 226\\ 0090\\ 227\\ 0091\\ 228\\ 0090\\ 226\\ 0090\\ 227\\ 0091\\ 228\\ 0090\\ 226\\ 0090\\ 226\\ 0090\\ 227\\ 0091\\ 228\\ 0090\\ 226\\ 0090\\ 226\\ 0090\\ 227\\ 0091\\ 228\\ 0090\\ 226\\ 0090\\ 226\\ 0090\\ 227\\ 0091\\ 228\\ 0090\\ 226\\ 0090\\ 226\\ 0090\\ 227\\ 0091\\ 228\\ 0090\\ 226\\ 000\\ 000\\ 226\\ 000\\ 000\\ 000\\ 00$

;

.

PAGE 003

A CONTRACTOR

[]

60 TO 420

I

Α5

6 Y1(1) = YN(b) = -5 To TY(11) = 5 Y1(c) = 00 TO 480 J

1-1)+XX(I))

J=1)+YY(J))

I SN	0141	560	ZK(1)=ZZ(1)
I SN	0142		ZK(KKA)=ZZ(KK)
I SN	0143		DD 560 K=2,KK
I SN	0144		ZK(K)=.5*(ZZ(K-1)+ZZ(K))
I SN	0145		WRITE(M,561) (I,XI(I),I=1,IIA)
I SN	0146		WRITE(M,562) (J,YJ(J),J=1,JJA)
I SN	0146		WRITE(M,563) (K,ZK(K),K=1,KKA)
1 S N I S N I S N I S N I S N I S N	0148 0149 0150 0151 0152 0153	د ٤٥٥	DD 600 N=1,NTOT CALL FINDCIFIND,JFIND,KFIND) XYZ(N,1)=XX(IFIND) XYZ(N,2)=YY(JFIND) XYZ(N,3)=ZZ(KFIND) CONTINUE
I SN I SN I SN I SN I SN I SN I SN I SN	0154 0156 0157 0159 0160 0161 0162	9000 650 660	IF(SKPLST.EQ.1) GO TO 660 NFPP=(NTOI/300)+1 DO 650 IP=1,NFPP WRITE(M,9000) FORMAT(1H1/6X.1HN.3X.4HX(N).2X.4HY(N).2X.4HZ(N)//) CALL LIST(2.IP) CONTINUE CONTINUE
I SN	0163	700	DO 700 J=1,JJ
I SN	0164		DO 700 I=1,II
I SN	0165		N = NF(I,J,1)
I SN	0166		VV(I,J,1) = X(N,1)
I SN	0167		CONTINUE
ISN	0168	750	K=1
ISN	0169		WRITE(M,8000) K,ZZ(K),(XX(I),I=1,II)
ISN	0170		D0 750 J=1,JJ
ISN	0171		WRITE(M,240) J,YY(J),(VV(I,J,K),I=1,II)
ISN	0172		CONTINUE
ISN	0173	C C	CALL FIELD
I SN	0174	800	DD 800 K=1,KK
I SN	0175		DD 800 J=1,JJ
I SN	0176		DD 800 I=1,II
I SN	0177		N=NF(I,J,K)
I SN	0178		VV(I,J,K) = X(N,1)
I SN	0179		CONTINUE
I SN	0180	8000	DO 900 K=1.KK
I SN	0181		WRITE(M.8000) K.ZZ(K).(XX(I).I=1.II)
I SN	0182		FORMAT(26H1ARRAY OF POTENTIALS AT Z(.I2.2H)=.F8.4//
I S N I S N I S N I S N I S N	0183 0184 0185 0186	850 900	L 15A,3HA =,3A,(8(F8,4,4X)/20X)) D0 850 J=1,JJ WRITE(M,240) J,YY(J),(VV(I,J,K),I=1,II) CONTINUE CONTINUE
I S N I S N I S N I S N I S N	0187 0188 0189 0190	1000 1001	NPROB=0 READ(L,333,END=99) NPRINT.NPTS,MA,MB,ME,KMAX,MORE READ(L,116) SMACH,TVOLTS,DENCC,XMASS,XMETER NPROB=NPROB+1

.

ISN	0191		WRITE(M,999)
ISN	0192		WRITECM,444) NPRINT,NPTS,MA,MB,ME,KMAX,NPROB ,SMACH,TVOLTS,DENCC,
		1	L_XMASS•XMETER
1 S N	0193		IF(NPTS.EQ.O.OR.ME.EQ.O.OR.MA.EQ.O) READ(L,222)XPT,YPT,AL1,BE1,EV
1 S N	0195		IF(NPTS_EQ.0) WRITE(M,445) XPT.YPT
ISN	0197		IF(ME.EQ.0) WRITE(M.446) EV
1 S N	0199		IF(MA.EQ.O) WRITE(M.447) XPT.YPT.AL1.BE1.EV
ISN	0201		IF(MA.GT.O.AND.XMASS.LE.O.) STOP
ISN	0203		IF(MA.GT.O) CUR=2.68E-B*DENCC*SORT(ABS(TVOLTS)/XMASS)
I S N	0205		IF(TVOLTS,GT,O,T) PARTCL(1)=PART1(1)
TSN	0207		$IF(IV)LIS_GI_0,)$ PARICL(2)=PARII(2)
T Ŝ N	0209		IF(TVOLTS-LT-O-) PARTCI(I)=PART2(I)
1 SN	0211		$IF(TVOLTS-LT-O_2) PARTCI (2) = PART2(2)$
IŚN	0213		WRITE(M.448) CUR.PARTCI
TSN	0214		CALL POWER
ΓŠΝ.	0215		TE (NORE GT_O) GO TO 1000
Î.S.N	0217		
T ŠN	ñ2ī8	99	ŠTOP TO STOP
IŠN	ň219		ĔŇĎ

and the second secon

Α7

I.

DATE

8 A

1 S N T S N 1 S N	0047 0048 0049	c	X=X.+ XDOT*TIMIN Y=Y + YDOT*TIMIN Z=Z + XDOT*TIMIN	X = k + x b o r + (X)	
1 S N I S N I S N	0050 0051 0052	L r	XSAV=X YSAV=Y ZSAV=Z		
I SN I SN I SN I SN I SN I SN	0053 0055 0057 0059 0061 0063	c	IF (NTIME EQ. 1) $(x=x_1)^{-1}$ IF (NTIME EQ. 2) $(x=x_2)^{-1}$ IF (NTIME EQ. 3) $Y=Y_1$ IF (NTIME EQ. 4) $Y=Y_2$ IF (NTIME EQ. 5) $Z=Z_1$ IF (NTIME EQ. 6) $Z=Z_2$	TR-	
1 S N 1 S N 1 S N	0065 0066 0067	נ (DX = X - X SA V DY = Y - Y SA V DZ = Z - Z SA V		
I SN I SN I SN I SN I SN I SN	0068 0070 0072 0074 0076 0078	c	IF((NTIME.EQ.1.DR.NTIME.EQ.2).AND.ABS(DX).O IF((NTIME.EQ.3.DR.NTIME.EQ.4).AND.ABS(DY).O IF((NTIME.EQ.5.DR.NTIME.EQ.6).AND.ABS(DY).O IF(NTIME.EQ1) SAVE=XSAV IF(NTIME.EQ2) SAVE=YSAV IF(NTIME.EQ3) SAVE=ZSAV	T.TROUND) NTIME=-1 T.TROUND) NTIME=-2 T.TROUND) NTIME=-3	
I S N I S N	0080 0081	L	RETURN END		

· 7

والمورد مارا

A CARE AND A CARE

, en

.)

A9

LEVE	L.	21.8	()	JUN	74)				1					0	5/3	60	I	F 0 !	RT	RAI	N F	ł								
I S	N	0002	COMP	IL	ER	OP	TIONS Subrou	- N S ITIN		= CE, EN	MA E B	IN. CDI	0 P T C , N	(=0 10 L	2. I Š	IN I N	E C 0 D	NT: ECI	=6 K,	0.: L 0 1	SI AD	ZE = , M /	=00 \P,	001 ND1	ÉÖI	T 1	N 0	10,	N07	REF	
-				C	3.0	U T	INE FO	DR E	VAL	UAI	IN	G C	URR	R E N	T = 1	DEN	SI	TY	I	NTI	EG	RAI	. S	ovi	ER	VE	L0	CI	F Y S	SPAC	E
IS	N	0 O O 3	i	L.		1	COMMON X	/BK	/11	M., J VV ([IP [30	JJ 20	M,J] P) •	• KI XP	(. N (30		T. X M	I V (1	0) 0)	V.	II P(505 11	• M -	•N• M(1	VF);2	0) 2(103	•	
IS	N	0004	r -			2			/NP),] RIN VHG		N P T	X • K S • M	14,	МВ	BC ME	мВ • К	MA)	VR X,	XP	ŊF-Į	ΎΡ	SK A	PRI 11	,8Ē	51	EV	ST • \$1	MACI	1,	
IS IS IS	N N N	0005 0004 0007	; ;			1			DIPV BIX			KMA DOT	CH, ZC	DE Dot JA,	NS •X KK	「,N 1,X A,I	N, 2, GO	P A 1 Y 1 U T	RT •Y •J	CL 2, 60	(2) 21 UT) • • Z 2 • K (PAR 2•X 50U	T 1 • Y T •	(2) • Z • X A •	• F P ł Y ł	PAR HI A,Z	T2 NT	(2) [Me	SAV	e,
	N N N N	0008 0009 0010 0011 0012				T	XIC303 DIMENS DATA E XSAVE = YSAVE = TEMP =	ION ND1 XPT YPT ABS				10) D1(4HR	2), BED		ENI	(2)	• F 4 H	ATI ĘS	E C C A	2) • 4	HPI	ES	1								
	2222222222	00116001600021 0001600021 00021000224 000224		9	99		FORMAT IFCTEA IFCTEA PI=3.1 A(1)== MOSTEP= MSTEP=	L EQ 415 415 415 100	E • 0 E • 0 926 SOR 0	X R 536 T C	38 RE 16-1			EE	===		GA EM	ΤI P	VE	0	R.	ZEI	20	TE	MPE	R	ATU	JRE	>		
				č	SΈ	T	UP SUP	IS C	VER	TF	LAS	ECT	OR J	[ES																	
A10		0025 0027 0028 0028 0031 0031 0034		9 c	90	1	IF(MA. JAMAX= JBMAX= KAMAX= NUMBEP NUMBEP IF(NN. FORMAT 5HHEN	EQ MB EQ EQ MB EQ EQ ICE	* MB 1) 12 14,	G D * 4 WR 1 4 • 1 35H	TO (TE 16H	25 (M, AL RAJ	0 990 PH# ECT)) \I [D R	MA	MB Erv S F			BÉI 3X AC	R , I H	ÉŇ	151 ER(1 B		A-I Lue	NT C	rer	VAI	L S , (5X.	
1 S 1 S 1 S 1 S 1 S 1 S		0035 0037 0038 0039 0040 0042		9	88		IF(ME ME2=2* JEMAX= KEMAX= IF(NN FORMAT	EQ ME EQ (1X	0) 1) 114	G 0 WR 1 • 2 7	TO LTE TH	20 (M, Ene	0 988 R G Y), 1	ME	, ME Er V	2 'AL	S I	AN	DI	HEI	NCI	., I	4 .	148	E	ENE	RGI	ſV	LUE	5)
15	N	0043	1	с С			GO TO	300)																						
	,			č	SI	NG	LE VAL	UE	DF	ENE	RG	Y																			
	N N N	0044 0045 0046 0048	,	2 9	00 36	1	JEMAX= KEMAX= IF(NN FORMAT DIMEN	1 EQ. (1X ISIO	1) •31 •NLE	WRI H P SS	LTE 10N1 VA1	(M. Den Lue	986 ERG , E1	5) 5E T	EV IC 4)	E E C A	SE	WI	TII	H I	ENE	ER(6¥,	191	E16	• 4	4,3	0H	VOL	.TS,	OR

 \mathcal{A}^{i_1}

DATE

The states of the second s

ISN 0049 GO TO 300 C C SINGLE TRAJECTORY ONLY ISN 0050 250 JAMAX=1ISN 0051 ISN 0052 JBMAX=1 JEMAX=1 ISN 0053 KAMAX = 1ISN 0054 KBMAX=1 TSN 0055 KEMAX = 1AL=AL1*PI/180. ISN 0056 ISN 0057 BE=BE1*P1/180. ISN 0058 WRITE(M, 984) AL1, AL, BE1, BE, EV, EE FORMAT (/1X, 17HSINGLE TRAJECTORY ISN 0059 984 1/1X, 7HALPHA =, F20.8, 12H DEGREES, OR, F20.8, 8H RADIANS 2/1X, 7HBETA =, F20.8, 12H DEGREES, OR, F20.8, 8H RADIANS 3/1X, 8HENERGY =, 1PE16.4, 30H VOLTS, OR DIMENSIONLESS VALUE, E16.4) ISN 0060 SINA=SIN(AL) ISN 0061 COSA=COS(AL) SUM OVER ENERGY, BETA, AND ALPHA **300 CONTINUE** ISN 0062 DENST=0. DD 1001 KE=1,KEMAX ISN 0063 **IŠN 0064** DO 1001 JE=1, JEMAX DENS=0. ISN 0065 ISN 0066 ISN 0067 NOESC=0 DO IOOO KB=1,KBMAX ĪŠN 006B ISN 0069 DO 1000 JB=1, JBMAX ISN 0070 DO 1000 KA=1, KAMAX ISN 0071 DO 1000 JA=1, JAMAX INITIAL POSITION ISN 0072 Z=0. X=XSAVE ISN 0073 ISN 0074 Y=YSAVE ISN 0075 IF(MA.EQ.D) GD TO 320 C CA=(A(JA) + FLOAT(2*KA - 1 - MA))/FLOAT(MA) SINA=SQRT(.5*(1.+CA)) COSA=SQRT(1. - SINA**2) ISN 0077 ISN 0078 ISN 0079 C ISN OOBD CBETA=(A(JB) + FLOAT(2*KB = 1 = MB))/FLOAT(MB) **TSN 0081** BE=PI*(1 + CBETA)С С 320 ISN 0082 ISN 0083 XDOT=SINA*COS(BE) YDOT=SINA*SIN(BE) **TSN 0084** ZDOT=COSA IŠN 0085 INT=0**TSN 0086** CALL INTERP C IFCIGOUT.GE.1.AND.IGOUT.LE.IIA.AND.JGOUT.GE.1.AND.JGOUT.LE.JJA. ISN 0087 1 AND KGOUT GE.1. AND KGOUT LE KKA) GD TO 340 ISN 0089 330 WRITE (M,9999)

1. 1997 - 1997

Construction and an an other sector of the

A11

1 S N 1 S N 1 S N 1 S N 1 S N	0090 0091 0092 0093	9999	FORMAT(////1X,43HONE OF THE IG-JG-KG INDICES IS OUT OF RANGE) WRITE (M,888) KSTEP.X,Y,Z,XDOT,YDOT,ZDOT,IGOUT,JGOUT,KGOUT,PHI WRITE(M,982)KE,JE,KB,J8,KA,JA,BE1,AL1,EV,PVOLTS STOP
ISN ISN ISN ISN ISN	0094 0095 0096 0097 0098	340	INT=1 PHISAV=PHI SPEED=0. PHIDLD=PHI IF(ME.GT.0) G0 T0 350
I S N I S N	0100 0101	C	E=EE GO TO 400
I SN I SN I SN I SN I SN	0102 0103 0104 0106	350	CE=(A(JE) + FLDAT(2*KE-1-ME))/FLDAT(ME) E=(1.+CE)/(1CE) IF(XMACH.GT.1.) E=XMACH**2*(1.+CE)/(1.+CE) E=E + AMAX1(PHI, 0.)
ISN ISN	0107 0109	400 6	IF(E.LT.PHI) GO TO 1001 SPEED=SQRI(E . PHI)
I SN I SN I SN I SN I SN I SN I SN I SN	0110 0111 0112 0113 0114 0114 0115 0116 0117 0118 0119 0120	L.	XDOT=SPEED*SINA*COS(BE) YDOT=SPEED*SINA*SIN(BE) ZDOT=SPEED*COSA AL=ARCOS(COSA) AL1=AL*180./PI BE1=BE*180./PI EV=E*TEMP PVOLTS=PHISAV*TVOLTS ZOLD=Z KSTEP=0 IF(NPRINT.NE-2.AND.NPRINT.NE.3) GO TO 490
		C PRI	NT INITIAL CONDITIONS OF TRAJECTORY
ISN ISN	0122 0123	982	WRITECM,982) KE,JE,KB,JB,KA,JA,BE1,AL1,EV,PVOLTS FORMAT(/1X,52HKE,JE, KB,JB, KA,JA, BETA,ALPHA,ENERGY,POTENTIAL= 1,/1X,3(I3,I2),1PE22.8,4H DEG,4X,E22.8,4H DEG,BX,E16.4,2H V,4X, 2 E16.4,2H V)
I S N I S N	0124 0125	L 980	WRITE(M,980) Format(9%,95HSTEPS X Y Z XDOT 1 YDOT ZDOT IG JG KG PHI)
I S N I S N	0126 0127	6 8 8 2	WRITE(M.888) KSTEP.X.Y.Z.XDOT.YDOT.ZDOT.IGOUT.JGOUT.KGOUT.PHI FORMAT(9X.15,1P6E11.3,316,E11.3)
ISN ISN ISN ISN	0128 0130 0131 0132	C C 490 500	TAKE A STEP IF (KSTEP.EQ.O) GO TO 550 CALL ORBIT KSTEP=KSTEP + 1 IF(NPRINT.EQ.3) WRITE(M,888) KSTEP,X,Y,Z,XDOT,YDOT,ZDOT,IGOUT,
I SN I SN I SN I SN	0134 0136 0137	998	IF(KSTEP.LE.MSTEP) GD TD 550 WRITE(M,998) MSTEP FORMAT(////1X, 9HMORE THAN,I6,19H STEPS - HENCE STOP)

•

ISN 01	138	ç	STOP
ISN 01	139	C 550 C	IF(Z.EQ.OAND.ZDDT.LT.O. 1.AND.Y.GE.YP(1).AND.Y.LE.YP(JV)) G0 T0 600
ISN 01	141	с с	IF((X.LE.XX(1).AND.ZDOT.LT.0.).DR. 1(X.GE.XX(II).AND.ZDOT.LT.0.))GO TO 600
ISN 01	143	L 2	IF((X.LE.XX(1).AND.XDDT.LT.0AND.ZDDT.GT.0.).OR. 1 (Y.LE.YY(1).AND.YDDT.LT.0.).DR. 2(X.GE.XX(II).AND.XDDT.GE.0AND.ZDDT.GT.0.).OR. 3 (Y.GE.YY(JJ).AND.YDDT.GT.0.).OR. 4 (Z.GE.ZZ(KK).AND.ZDDT.GT.0.).GO TO 700
ISN 01 ISN 01	145 147	C	IF(SKPRFL=EQ.1) G0 T0 538 IF(((Y.LE.(YY(MBC)=.5*Z)).AND.(Y.GT.(YY(MBC)=.5*ZZ(KUK))).OR. 1((Y.GE.(YY(MBD)+.5*Z)).AND.(Y.LT.(YY(MBD)+.5*ZZ(KUK))) 2.AND.X.GE.XX(IIX).AND.X.LE.XX(IUX)) GD T0 600
ISN 01 ISN 01 ISN 01 ISN 01 ISN 01	149 150 152 153	538	CONTINUE IF (Z.NE.0OR .ZDOT.GE.0.) GO TO 540 ZDOT≈=ZDOT IF (NPRINT.EQ.3) WRITE(M,888) KSTEP,X,Y,Z,XDOT,YDOT,ZDOT,IGOUT,
ISN 01 ISN 01	155 156	540	1 JGOUT,KGOUT,PHI GO TO 590 CONTINUE
ISN 01 ISN 01 ISN 01 ISN 01	157 159 160 161	L	IF (KSTEP.EQ.0) GO TO 500 PHIOLD=PHI CALL INTERP IF(IGOUT.LT.1.OR.IGOUT.GT.IIA.OR.JGOUT.LT.1.OR.JGOUT.GT.JJA.OR. 1KGOUI.LT.1.OR.KGOUT.GT.KKA) GO TO 330
ISN 01 ISN 01 ISN 01 ISN 01 ISN 01	165 167 168 170	C	IF(NIIME=LI=1=UR=NIIME=GI=6) GU TU 580 IF(NTIME=NE=1=AND=NTIME=NE=2) GD TO 560 XDOTS=XDOT**2 + PHIOLD=PHI IF(XDOTS=EQ=0=) XDOT=0 IF(XDOTS=GI=0=AND=XDOT=NE=0=) XDOT=SQRT(XDOTS)*SIGN(1=,XDOT) IF(XDOTS=GI=0=AND=XDOT=NE=0=) XDOT=SQRT(XDOTS)*SIGN(1=,XDOT)
ISN 01	174	r	IF(NPRINT.EQ.3.AND.XDOTS.LT.O) WRITE(M,888) KSTEP,X,Y,Z,XDOT,YDOT, 1 ZDOT,IGOUT,JGOUT,KGOUT,PHI
ISN 01 ISN 01 ISN 01 ISN 01 ISN 01 ISN 01 ISN 01	176 178 179 181 183 185	560 c	IF(NTIME.NE.3.AND.NTIME.NE.4) GO TO 570 YDOTS=YDOT**2 + PHIOLD-PHI IF(YDOTS.EQ.0.) YDOT=0. IF(YDOTS.GT.0.AND.YDOT.NE.0.) YDOT=SQRT(YDOTS)*SIGN(1.,YDOT) IF(YDOTS.LT.0.AND.YDOT.NE.0.) YDOT=YDOT IF(NPRINT.EQ.3.AND.YDOTS.LT.0) WRITE(M,888) KSTEP,X,Y,Z,XDOT,YDOT. 1 ZDOT.IGOUT,JGOUT,KGOUT,PHI
ISN 01 ISN 01 ISN 01 ISN 01 ISN 01 ISN 01 ISN 01 ISN 01	187 189 190 192 194 196 198	570	IF(NTIME.NE.5.AND.NTIME.NE.6) GD TO 590 ZDOTS=ZDOT**2 + PHIDLD-PHI IF(ZDOTS.EQ.0.) ZDOT=0. IF(ZDOTS.GI.0.AND.ZDOT.NE.0.) ZDOT=SQRT(ZDOTS)*SIGN(1.,ZDOT) IF(ZDOTS.LT.0.AND.ZDOT.NE.0.) ZDOT=~ZDOT IF(NPRINT.EQ.3.AND.ZDOTS.LT.0) WRITE(M,888) KSTEP,X,Y,Z,XDOT,YDOT, 1 ZDOT,IGOUT,JGOUT,KGOUT,PHI GO TO 590

A 13

i.

ł

ļ.

-

		Ç	
I SN I SN	0199 0200	580 997	WRITE(M,997) NTIME FORMAT(////1X,17HTROUBLE = NTIME =.13.19H = OUT OF RANGE 1=6)
	0201	887	WRITE(M, 887) KSTEP, X, Y, Z, XDOT, YDOT, ZDOT, IGOUT, JGOUT, KGOUT, PHI, SAVE FOR MAT(9X, 15, 1961), 3, 316, 511, 3, SAVE = 518, 10)
İŠN	0203	r	STOP
ISN	0204	590	CALL INTERP
TON	0205	:	1K_{C}
120	0207	:	TECNERINI'EÖ''?) METLECW'ARA) K21Eb'X'AA'XDOL'ADOL'YDOL'IGONL' TECNERINI'EÖ''?) METLECW'ARA) K21Eb'X'AA'XDOL'ADOL'YDOL'IGONL'
ISN	0209	C	GO. TD 500
ISN	0210	Č PAR' 600	TICLE IS ABSORBED' CONTINUE
I S N I S N	0211 0213		IF(NPRINT.NE.2.AND.NPRINT.NE.3) GO TO 1002 FATE(1)=FND1(1)
IŚN			FATE(2)=ENDI(2)
1 3 14	0215		
		C	
I SN I SN	0216	100	CONTINUE IF(NPRINT.EQ.1) GO TO 720
1 SN I SN	0219 0221		IF(NPRINT.NE.2.AND.NPRINT.NE.3) GD TO 740 FATE(1)=END2(1)
T S N T S N	0222 0223		FATE(2)=END2(2) G0 T0 740
I SN T SN	0224	720	WRITE(M, 982) KE, JE, KB, JB, KA, JA, BE1, AL1, EV, PVOLTS
İŠN	0226	r r	IFCME.EQ.03 GOTTO 750
ISN	0228	L.	CSANGL=ZDOT/SORT(XDOT**2+YDOT**2+ZDOT**2)
ISN	0230		CDEFA=SPEED**2/FLOAT(NUMBER)
I SN I SN	0231 0233		IFCABS(XPON).GT.36.) GD TO 1000 ADD =COEFA*EXP(XPON)
ISN	0234	C	DENS=DENS + ADD
	0235	750	IF(NPRINT.NE-2.AND.NPRINT.NE.3) GO TO 1002
İŠN	0238	889	FORMAT(1X, 2A4, 15, 1P6E11.3, 316, E11.3)
ĮŚŅ	0239	1002	CONTINUE
ISN	0240		TECHOSTPS.GE.KSTEP) GU TO 1000 KES=KE
I SN I SN	0243 0244		JES=JE KBS=KB
I S N I S N	0245 0246		J8S=J8 κας≖κα
ISN	0247		
ĪŠN	0249	1000	CONTINUE
		C END	DF SUM OVER ANGLES
1 S N	0250	L L	FRACT=FLOAT(NDESC)/FLOAT(NUMBER)

.

A14

		C	
I S N I S N	0251 0252	978	WRITE(M,978) NOESC,NUMBER,FRACT,EV,DENS Format(/1x,16hratio escaping =,15, 7h out of,15,14h or a fraction,
		C	1 F13.8,14H AT ENERGY E =,F13.8, 6H VOLTS,4X.6H(DENS=,1PE14.4,1H))
ISN	0253	-	IF(NPRINT-EQ.0) GO TO 800
ISN	0257	976	FORMAT(1X, BOHDENS IS THE SUM OF ADD=SPEED**2*EXP(XPON)/NUMBER OVER
		C	I A NEWISTNERE OF DIRECTIONS///
	0258 0260 0261	800	IF(ME.EQ.0) GO TO 1001 CDEFE=2./(1 CE)**2/FLOAT(ME) IF(XMACH.GT.1.) COEFE=CDEFE*XMACH**2
ISN	0264	1001	CONTINUE
ISN	0265	ե c	IF(ME.EQ.0) DENST=SPEED**2*FRACT
			TRAJECTORY WITH MOST STEPS. PRINT K AND J INDICES.
ISN	0267	6	WRITE(M,972) MOSTPS,KES,JES,KBS,JBS,KAS,JAS
ISN	0268	972	FORMAT(///1X, 15, 3(13, 12), 29H = HOSTPS, KE, JE, KB, JB, KA, JA)
1 S N 1 S N	0270	974	WRITE(M, 974) XSAVE, YSAVE, PHISAV, DENSI, PARTCL FURMAT(/1X, 26HAT DIMENSIONLESS X, Y, PHI =, 3F12.6, 1H, 5X, 1PE16.4,
T S N I S N	0271 0272		RETURN END

••

•

l

,

.

.

L	VEL	21.8	(JUN	74)	OS/360 FORTRAN H	
	ISN	0002	COMPILE	R OPTIONS SUBRO	NAME= MAIN, OPT=02, LINECNT=60, SIZE=0000K, SOURCE, EBCDIC, NOLIST, NODECK, LOAD, MAP, NOEDIT, NOID, NOXREF UTINE INTERP	
	ISN	0003		INTER Commo	POLATION WITHIN GRID N/BK/IIM.IIP.JJM.JJP.KK.NTOT.IV.JV.II.JJ.M.N.VP(30).	
	[S N 1 S N	0004 0005		1X V 2 C 2 2 X X C 4 0 C D M M D C D M M U 1 X I C 3 0	080,33,VV(30,20,10),XP(30),XM(10),YP(20),YM(10),ZZ(10),),YY(30),ILX,IUX,KUK,MBC,MBD,VRF,NFPS,SKPRFL,SKPLST N/ORB/XDDT,YDDT,ZDDT,X1,X2,Y1,Y2,Z1,Z2,X,Y,Z,PHI,NTIME,SAVE N/INTER/INT,IA,JJA,KKA,IGOUT,JGOUT,KGOUT,XA,YA,ZA,),YJ(20),ZK(10)	
	I S N I S N I S N I S N I S N	0006 0007 0008 0009	L	1600T J600T K600T NCH=0	= 0 $= 0$ $= 0$	
	I SN I SN I SN I SN	0010 0011 0012	C C	X A = X Y A = Y Z A = Z		
	I S N I S N I S N I S N	0013 0015 0017	Ċ	LOCAT IF(XA IF(XA IF(IN	E XA .EQ.XI(IIA)) IG=IIA-1 .EQ.XI(IIA)) GO TO 103 T.NE.O) GO TO 100	
-	I SN I SN I SN I SN'	$\begin{array}{c} 0 & 0 & 1 & 9 \\ 0 & 0 & 2 & 0 \\ 0 & 0 & 2 & 1 \\ 0 & 0 & 2 & 3 \end{array}$	L 10	DD 10 IG=I IFCXA CONTI	I=2,IIA 1 .LT.XI(I)) GD TO 103 NUE	
116	ISN ISN ISN ISN ISN	0024 0026 0028 0029 0031	10 10	0 IFCXA IFCXA 1 IG=IG IFCXA GD ID	-GE.XI(IG+1)) GD TO 102 -GE.XI(IG)) GD TO 104 -1 -LT.XI(IG)) GD TO 101 103	
	ISN ISN	0032	10 C	2 IĞ=IĞ IF(XA	+1 •GE•XI(IG+1)) GO TO 102	
		0036	10 10 C C	ACCEP	NUE T IF XI(IG) LESS THAN OR EQUAL TO XA LESS THAN XT(TG+1).	
	I SN I SN I SN I SN I SN I SN	0037 0039 0041 0043 0044 0045	υουυ υ	LOCAT IF(YA IF(YA IF(IN DO 20 JG=J- IF(YA	E YA • EQ.YJ(JJA)) JG=JJA-1 • EQ.YJ(JJA)) GO TO 203 I.NE.O) GO TO 200 J=2,JJA 1 • LT.YJ(J2) GO TO 203	
	1214	UU4 (20 C	CUNTI	NUE	

A16

DATE

	ISN	0048	200	IF(YA.GE.YJ(JG+1)) GD TD 202 IF(YA.GE.YJ(JG)) GD TD 204
	I ŠN I SN	0052	201	JG=JG=1 $IF(YA,LT,YJ(JG)) GD TD 201$
	1 ŠN 1 SN 1 SN	0055 0056 0057	202	GO TO 203 JG=JG+1 IF(YA.GE.YJ(JG+1)) GO TO 202
	I S N I S N	0059 0060	203 204	NCH=1 Continue
			JUUU	ACCEPT IF YJ(JG) LESS THAN OR EQUAL TO YA LESS THAN YJ(JG+1).
			č	LOCATE ZA
	I S N I S N I S N	0061 0063 0065	c	IF(ZA.EQ.ZK(KKA)) KG=KKA=1 IF(ZA.EQ.ZK(KKA)) GO TO 303 IF(INT.NE.O) GO TO 300
	1 S N 1 S N	0067		DD 30 K=2,KKA
	1 <u>5</u> N 1 5 N	0069 0071	30	ÎF(ŽA.LT.ZK(K)) GO TO 303 CONTINUE
	1 S N 1 S N	0072	300	IF(ZA-GE-ZK(KG+1)) 6D TO 302 IF(ZA-GE-ZK(KG)) 6D TD 304
	I SN I SN	0076	301	KG=KG=1 IF(ZA.LT.ZK(KG)) GD TO 301
•	T S N I S N I S N	0079 0080 0081	302	GO TO 303 KG=KG+1 IF(ZA.GE.ZK(KG+1)) GO TO 302
117	1 S N 1 S N	0083 0084	303 304	NCH=1 CONTINUE
				ACCEPT IF ZK(KG) LESS THAN DR EQUAL TO ZA LESS THAN ZK(KG+1).
			Ċ	LOCATE LINE AND BOX
	I S N I S N	0085 0086	U	X1=XI(16) Y1=YJ(J6)
	1 S N T S N	0087		21 = 2K(KG) $X_2 = XI(IG+1)$
	T S N T S N	0090	r	$Y_2 = Y_3(J_5+1)$ 22=2K(KG+1)
		0091	L	IF(X.NE.X1.OR.XDOT.GE.O.) GO TO 400
	1 S N 1 S N	0094 0095	ſ	$\overline{X} = \overline{X} $ $X = \overline{X} $ $X = \overline{X} $ (IG)
	1 S N I S N	0096 0098	400	IF(Y.NE.Y1.OR.YDOT.GE.O.) GO TO 500 JG=JG=1
	I SN I SN	0099 0100		Ý2=Ý1 Y1=YJ(JG)
	1 S N	0101	С 500	IF(Z.NE.Z1.OR.ZDOT.GE.O.) GO TO 600

•

Construction of the other states of the other

ISN 0103 ISN 0104 ISN 0105	c	KG=KG -1 Z2=Z1 Z1=ZK(KG)		
ISN 0106 ISN 0107 ISN 0108 ISN 0109 ISN 0110 ISN 0111	600	PHI=VV(IG,JG,KG) IGUUT=IG JGDUT=JG KGOUT=KG RETURN END		

i

r

A18

· •

• .				
			COMPILER OPTIONS - NAME= MAIN,OPT=02,LINECNT=60,SIZE=0000K, SOURCE,EBCDIC,NOLIST,NODECK,LOAD,MAP,NOEDIT,NOID,NOXREF	DATE
	ISN	0002	SUBROUTINE POWER	
			C CURRENT DENSITIES AND POWER LOSS	
	ISN	0003	COMMON/BK/IIM,IIP,JJM,JJP,KK,NIDT,IV,JV,II,JJ,M,N,VP(30), 1XYZ(2080,3),VV(30,20,10),XP(30),XM(10),YP(20),YM(10),ZZ(10),	
	1 S N	0004	2XX(40),YY(30),ILX,IUX,KUK,MBC,MBD,VRF,NFPS,SKPRFL,SKPLST CUMMON/CP/NPRINI,NPTS,MA,MB,ME,KMAX,XPT,YPT,AL1,BE1,EV,SNACH,	
	1 <u>S</u> N	0005	COMMON/CO/PYOLTS,XMACH,DENST,NN,PARTCL(2),PART1(2),PART2(2)	
		0000	IF (NPIS.EQ.O.OR.MA.EQ.O) WRITE(M,997) XPT, YPT, AL1, BE1, EV	
		0010	IF (NPRINT EQ. 0) WRITE(M. 990)	
	ISN	0014	IF (NPRINT-EQ.2) WRITE(M,992) IF (NPRINT-EQ.3) WRITE(M,993)	
	I ŠN T SN	0018	990 FORMATC/38H NPRINT=0 MEANS NO TRAJECTORY PRINTING) 991 FORMATC/53H NPRINT=1 PRINT INDICES OF ESCAPING TRAJECTORIES ONLY)	
	ĪŠN	0020	992 FORMAT(/56H NPRINT=2 PRINT FIRST AND LAST STEPS OF ALL TRAJECTORIE	
	ISN	0021	993 FORMAT(/52H NPRINT=3 MEANS PRINT EVERY STEP OF ALL TRAJECTORIES) C	-
	ISN	0022	IF(TVOLTS-EQ.0.) RETURN	
	ISN	0024	XMACH=SMACH	
			Č NON-DIMENSIONALIZE THE POTENTIAL DISTRIBUTION. THEN RESTORE AT END.	
	I S N I S N	0025	$\begin{array}{c} DO \ 200 \ K = 1 \ K \\ DO \ 200 \ J = 1 \ J \\ J \end{array}$	
A19	Î Ŝ N T S N	0027	$\begin{array}{c} 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 $	
Ŭ	ĪŠN	0029	200 ČONTINUE	
			Č DEFINE THE PANEL POINTS AT WHICH THE CURRENT AND POWER IS EVALUATED	
			Č CASE OF A SINGLE POINT C	
	ISN	0030	IF(NPTS_EQ.0.OR.MA_EQ.0) COEFM = XMETER**2 C	
			Č CASE OF MULTIPLE POINTS FOR INTEGRATION OVER PANEL SUB-AREAS C	
•	I SN T SN	0032	JVM=1 IVM=1	
	I S N I S N	0034	IF(JV.GT.1) JVM=JV-1 IF(IV.GT.1) IVM=IV-1	
	I SN I SN	0039 0039	NA=0 NAREAS=IVM*JVM	
	I S N I S N	0040	TPOWER=0. TCURNT=0.	
	I S N I S N	0042	TAREA=0. NN=0	
	T Ŝ N T Ŝ N	0044	DD 500 J=1,JVM DD 500 I=1.IVM	
	IŠN	0046	NA = NA + 1	

ISN 0047 ISN 0048		NP=0 IF(NPTS.EQ.0.0R.MA.EQ.0) GO TO 250	
ISN 0050 ISN 0051		$P_{0} = 0$ $C_{U} = 0$	
ISN 0052		A(1)=-1./SQRT(3.) A(2)=-A(1)	
ISN 0054 ISN 0055	250	GO TO 260 Continue	
ISN 0056		JX MAX = 1	
ISN 0058		KMAX=1	
ISN 0060	260	JXMAX=2	
ISN 0061 ISN 0062	270	JYMAX=2 Continue	
ISN 0063 ISN 0064		DO 400 KY=1, KMAX.	
15N 0065		$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$4 \times 4 \times 4 \times 4 \times 2 \times$
ISN 0067			
ISN 0069		IFCNPISEQ.0.0R.MA.EQ.0) GO TO 300	MTJ.
ISN 0072		LX=(A(JX) + FLDAT(2*KX = 1 = KMAX))/FLDAT(KMAX) GY=(A(JY) + FLDAT(2*KY = 1 = KMAX))/FLDAT(KMAX)	
ISN 0073 ISN 0074		XPT = (XP(I+1) - XP(I))/2 * CX + (XP(I+1) + XP(I))/2 * CY + (YP(I+1) + YP(I))/2 * CY + (YP(I+1) + (YP(I+1) + YP(I))/2 * CY + (YP(I+1) + (YP(I+1) + YP(I))/2 * CY + (YP(I+1) + (YP(I+1) + (YP(I+1)))/2 * CY + (YP(I+1) + (YP(I+1))/2 * CY +	×.
ISN 0075 ISN 0076		COEF = (XP(I+1)-XP(I))*(YP(J+1)-YP(J)) $AREA = COEF * YWETEP**2$	
IŠN 0077	C	CDEFM = AREA/4./FLOAT (KMAX**2)	TRIT = NIN / MAANAR AT G
	Ĵ C COM	יע המעקדמת איז מגע אינתידע אום לאין האיז אוסטער האיז IDUITE FACH היוסטער האיז האיז ווסטער איז איז האיז האיז ווסט	
T S N 0070	C EVA	LUATE POWER DENSITY	LAL TO
ISN 0079	200	DENCUR=DENST *CUR	NIMBE STAR
ISN 0080 ISN 0081		POWDEN≔PVOLTS*DENCUR IF(MA.EQ.O) GO TO 600	ITRACT = NN/MIME
ISN 0083 ISN 0084		XPTM=XPT*XMETER YPTM=YPT*YMETER	
ISN 0085 TSN 0086		XPM=XP(I)*XMETER	
ISN 0087		YPM=YP(J)*XMETER	
ISN 0088	C	TPPM=TP(J+I)*XMETER	
120 0083	995	INFIG.5.27H METERS, AND COEFFICIENT = F10.5.14H SOUARE	METERS, Y =
ISN 0090	C	IF (NPTS GT D AND MA GT D) WETTECH 944 NA YOU YOU YOU	- METERS)
ISN 0092	994	FORMATC /5X, 16H IN SUB AREA NO., I3, 1X, 17HB DUNDED BY X	IN ()
	r	2 F10.5,3H TO,F10.5, 8H) METERS)	
ISN 0093	U U	WRITE, (M. 995) NP, XPTM, YPTH, COEFM	
ISN 0095	988	FORMAT(6X, 53HTHE VOLTAGE, CURRENT DENSITY. AND POWER P	FNSTTY ADE =
		1/6X,1PE16.4.6H VOLTS,4X,E16.4.23H AMP/(SQ-METER),	ND,E16.4,
ISN 0096			

A20

I S N I S N I S N I S N I S N	0098 0099 0100 0101 0102	400	CU = CU + CDEFM*DENCUR PO = PO + CDEFM * POWDEN CONTINUE AVCD = CU/AREA AVPD = PO/AREA
I S N I S N I S N I S N	$\begin{array}{c} 0103 \\ 0104 \\ 0105 \end{array}$	984	WRITE(M,986) NA,CU,PO,PARTCL WRITE(M,984) NA,AREA,AVCD,AVPD FORMAT(1X,18HIN SUB=AREA NUMBER,I3,8H OF AREA,1PE16.4,15H SQUARE 1 METERS,/52H THE AVERAGE CURRENT DENSITY AND POWER DENSITY ARE =,
ISN	0106	986 C	FORMAT(/1X,18HIN SUB-AREA NUMBER,13,28H THE CURRENT AND POWER ARE 1 =,1PE16.4,12H AMP, AND,E16.4,14H WATTS, FOR,2A5)
I S N I S N I S N I S N	0107 0108 0109 0110	500	TAREA=TAREA + AREA TCURNT = TCURNT + CU TPOWER = TPOWER + PO CONTINUE
I S N I S N	0111 0112	982	WRITE(M,982) TCURNT,TPOWER,PARTCL FORMAT(///1X,34HTOTAL CURRENT AND POWER LOSS ARE =,1PE16.4, 1 12H AMP. AND.E.16.6.13H WATT. EDR.245)
I SN I SN I SN I SN	0113 0114 0115 0116	980 C	AVED=YEURNY/TAREA AVPD=YEURNY/TAREA AVPD=TPOWER/TAREA WRITE(M,980) TAREA,AVCD,AVPD FORMAT(/1X,26HWITH A TOTAL PANEL AREA OF,1PE16.4,15H SQUARE METERS 1,/1X,51HTHE AVERAGE CURRENT DENSITY AND POWER DENSITY ARE =, 2 E16.4,19H AMP/(SQ-METER) AND,E16.4,16H WATT/(SQ-METER))
		C C C	RESTORE POTENTIAL DISTRIBUTION TO DIMENSIONAL VALUES
ISN ISN ISN ISN ISN ISN ISN	0117 0118 0119 0120 0121 0122 0123 0124	600 700	CONTINUE D0 700 K=1,KK D0 700 J=1,JJ D0 700 I=1,II VV(I,J,K)=VV(I,J,K)*TVOLTS CONTINUE RETURN END

A21

i

ı.

l

.

	COMPILER	OPTIONS - NAME= MAIN.OPT=02.LINECNI=60.SIZE=0000K.
TCA	0000	SUPPORT SUURCE EBCUIC NULIST, NUDECK, LUAD, MAP, NOEDIT, NOID, NOXREF
TSN	0002	SUBRUUTINE LISILLSTATUT J COMMONISVITATI TO THA HD VV NTOT TV IV TT TI V N VDCOON
1 3 1	0005	
ISN	0004	
ISN	0005	
TSN	0006	DD 500 LINE=1,60
ISN	0007	DO 200_NP=1,5
ISN	0008	$\xi P = \bigcup I N = + \bigcup \{N = 1\} \times 60 + \bigcup \{I = 1\} \times 300$
15N	0009	LECKP. GI + NTUL - AND - NP + EQ - 1 > RETURN
1.214	0011	TF(KP = GI = NIUI) GU IU 300
	0015	
TCN	0014	$ \begin{array}{llllllllllllllllllllllllllllllllllll$
1 SN		$\frac{1}{1} \left(\frac{1}{1} - \frac{1}{1} + \frac{1}{1} + \frac{1}{1} \right) = \frac{1}{1} \left(\frac{1}{1} + \frac{1}{1} + \frac{1}{1} + \frac{1}{1} + \frac{1}{1} + \frac{1}{1} + \frac{1}{1} + \frac{1}{1} \right)$
T SN	0019	
IŚN	0021	$\mathbf{f}_{\mathbf{r}}$
TSN	0023 200	
ISN	0024 300	GO_TU_(400,450),LST
IZN	0025 400	WRITECM:1000) (KQUT(NP),XOUT(NP), NP=1,NMAX)
12N	0026 100	0. EURMAT (5(18, F16.8))
ISN		A WALLEY AUDUJ CAUCICNPJ, XUUICNPJ, YUUICNPJ, ZUUTCNPJ, NP=1, NMAX)
TSN	0030 500	
ŤŠŇ	0031	RETIRN
ISN	0032	END

	COMP	ILER	OPTIONS - NAME = MAIN, OPT=02, LINECNT=60, SIZE=0000K, SDURCE, EBCOIC, NOULST, NODECK, LOAD, MAP, NOEDIT, NOID, NOVREE
ISN	0002	c	SUBROUTINE RELAX
ISN	E 0 0 0	L	COMMON/BK/IIM, 11P, JJM, JJP, KK, NTOT, IV, JV, II, JJ, M, N, VP(30), 1XY/(2080, 3), VV(30, 20, 10), XP(30), XM(10), YP(20), YM(10), Z/(10),
I SNN I SSNN I SSNN I SSNN I SSNN I SSNN I SSNN I SSNN I SSNN I SSNN I SSNN	0004 0005 0006 0007 0008 0009 0010 0011 0012 0013 0014 0016	200	2XX(40), FT(30), FLX, FDX, KDK, MBC, MBD, VKF, NFFS, SKPKFL, SKPLST CDMMDN/FLD/X(2080,2), COEF(2080,7), INDX(2080,6), SKPCD DMEGA=1.9 EPS = 1.E-3 IYMAX=2000 ITR=0 IPROLD=0 IGU=1 ITR=ITR+1 DELTAM=0. DD 500 N=1,NTOT IF(X(N,2).EQ.1)GO TD 500 X1=X(N,1)
I SN I SN I SN I SN I SN I SN	0017 0018 0019 0020 0021 0022	ſ	FN=COEF(N,1)/COEF(N,7) FS=COEF(N,2)/COEF(N,7) FE=COEF(N,3)/COEF(N,7) FW=COEF(N,4)/COEF(N,7) FU=COEF(N,5)/COEF(N,7) FD=COEF(N,6)/COEF(N,7)
I SN I SN I SN I SN I SN I SN	0023 0024 0025 0026 0027 0028	C.	NN = INDX(N, 1) NS = INDX(N, 2) NE = INDX(N, 3) NW = INDX(N, 4) NU = INDX(N, 5) ND = INDX(N, 6)
I S N I S N I S N I S N I S N I S N I S N	0029 0030 0032 0034 0036 0038 0038 0038	c	SUM=0. IF(NN.GT.O) SUM = SUM+FN*X(NN.1) IF(NS.GT.O) SUM = SUM+FS*X(NS.1) IF(NE.GT.O) SUM = SUM+FE*X(NE.1) IF(NW.GT.O) SUM = SUM+FW*X(NW.1) IF(ND.GT.O) SUM = SUM+FD*X(ND.1) IF(NU.GT.O) SUM = SUM+FU*X(NU.1)
1 S N 1 S N 1 S N 1 S N 1 S N 1 S N 1 S N 1 S N 1 S N 1 S N	0042 0044 0044 0046 00489 0051 0055 0055 0055 0055 0055 0055 005	500 8888	X(N.1) = OMEGA*SUM+(1OMEGA)*X1 DELTA = ABS(X(N,1)-X1) IF(ABS(X1).GT.1.E-10) DELTA=ABS((X(N,1)-X1)/X1) IF(DELTA .GT. DELTAM) DELTAM=DELTA CONTINUE IF(ITR.GT.ITMAX) WRITE(M,88888) ITR IF(ITR.GT.ITMAX) GU TO 700 FORMAT(////10H MORE THAN, I4,11H ITERATIONS) IPR=ITR/500 IF(IPR.LE.IPROLD) GO TO 600 IPROLD=IPR GO TO 800
ISN	0059	600 Ç	IF(DELTAM.GT.EPS) GO TO 200
		<u>ا</u>	TIERATION FINISHED. PRINT AND EXIT.

A23

DATE

		C	
I S N	0061	700	160=2
1 SN	0062	800	NFPP=(NTOT/300) +1
1 SN	0063		$U_0 = 900$ (P=1, NFPP
ISN	0064		WRITECM,7777) ITR,EPS,DELTAM,OMEGA
ISN	0065	7777	FURMATCISHISOLUTION AFTER, 16, 2X, 25HITERATIONS WITH TOLERANCE.
			1 F12.8,8X,18HMAXIMUM DIFFERENCE,F12.8,8X,6HOMEGA=,F8.5)
1 S N	0066		CALL LIST(1, IP)
ISN	0067	900	CONTINUE
		C	
1 S N	0068		$60-10-6600$, 1000 , 160 $F(160, E9, 1)$ 60^{-70} 60^{-70}
I.S.N.	•0069	1000	RETURN
1 S N	0070		END

LÉVÉL	21.8 (JUN 7	4) OS/360 FORTRAN H
	COMPILER	OPTIONS - NAME = MAIN, DPT=02, LINECNT=60, SIZE=0000K,
TSN	0002	SUBROUTINE FIND(I,J,K)
ISN	0003	COMMON/BK/IIM, IIP, JJM, JJP, KK, NTOT, IV, JV, II, JJ, N, N, VP(30),
		1XT2(2080,3),VV(30,20,10),XP(30),XP(10),YP(20),YM(10),ZZ(10), 2XX(40),YY(30),ILX,IUX,KUK,MRC,MRD,VRF,NFPS,SKPRFL,SKPLST
I S N	0004	
1 <u>S</u> N	0005	K=N/IIJJ+1
ISN	0006	IF(K .GE. 2 .AND. MOD(N.IIJJ) .EQ. 0) K=K=1
1 S N	<u>ក្តីប៉ី</u> និ	NKIJ=N - IIJJ*(K-1)
1 S N	0003.	J=NKIJ/II+1
<u>1 S N</u>	0010	IF(J •GE• 2 •AND• MOD(NKIJ•II) •EQ• 0) J=J=1
1 S N	0012	I = NKIJ - II + (J-1)
ISN	60013	RETURN
121	0014	END

. .

;

Lt	: V	E	Li	21	 8 .	ς.	۶U	N	74	- `
_		_		_	 -					

OS/360 FORTRAN H

	COMPIL	ER OPTION	NAME = MAIN, OPT=02, LINECNT=60, SIZE=0000K, SOURCE, EBCDIC, NOLISI, NODECK, LOAD, MAR, NOTO, NOTE, NOTE	
1 S N 1 S N	0002 0003	SUBR CDMM 1 X Y Z C	UTINE ARAY N/BK/IIM, IIP, JJM, JJP, KK, NTOT, IV, JV, II, JJ, M, N, VP(30), 080, 32, VV(30, 20, 10), XP(30), XM(10), YP(20), YM(10), ZZ(10),	
I S N I S N	0004 0005	2 X X C 4 C D M M C D M M),YY(30),1LX,1UX,KUK,MBC,MBD,VRF,NFPS,SKPRFL,SKPLST N/FLD/X(2080,2),CDEF(2080,7),INDX(2080,6),SKPCD N/CCC/CN,CS,CE,CW,CU,CD,CC,NN,NS,NE,NW,NU,ND	
		COEF COEF COEF COEF COEF COEF COEF SAVE	ICIENT ARRAY = CDEF(N,7), WHERE N,1)=CN (NDRTH=+Y NEIGHBOR) N,2)=CS (SOUTH=-Y NEIGHBOR) N,3)=CE ('EAST=+X NEIGHBOR) N,4)=CW (WEST=-X NEIGHBOR) N,5)=CU (UP=+Z NEIGHBOR) N,6)=CD (DOWN=-Z NEIGHBOR) N,7)=CC (= CENTRAL POINT) COEFFICIENTS AND INDICES	
I SN I SN I SN I SN I SN I SN I SN	0006 0007 0008 0009 0010 0011 0012	CODE CODE CODE CODE CODE CODE CODE CODE	N • 1)= CN N • 2)= CS N • 3)= CE N • 4)= CW N • 5)= CU N • 6)= CD N • 7)= CC	
1 1 1 1 1 1 1 1 1 1 1 1 1 1	0013 0014 0015 0016 0017 0018 0019 0021 0022 1 0022 1 0022 1 0022 1 0024 0025	INDX INDX INDX INDX INDX INDX INDX INDX	N,1)=NN N,2)=NS N,3)=NE N,4)=NW N,5)=NU N,6)=ND PCD.EQ.1) GO TO 20 (M,1000) ND.CD,NS.CS.NW,CW,N.CC.NE.CE.NN.CN,NU.CU (M,1000) ND.CD,NS.CS.NW,CW,N.CC.NE.CE.NN.CN,NU.CU T(/7(1X,1H(,I4,2H)=,1PE10.4)) NUE N	

A26

с,

DATE

Ξ

.

OS/360 FORTRAN H

	CO	MPILER	OPTIONS - NAME= MAIN, OPT=02, LINECNT=60, SIZE=0000K, SDURCE, FRONT, NOT IST, NODECK, LOAD, MAR, NOFO, NOTO, NOVPEE
ĮŚŅ	0002		SUBROUTINE CUD(MP,C,A)
121	0003		LUMMUN/55/11M,11P,JJM,JJP,KK,N101,1V,JV,11,JJ,M,N,VP(30), 1XYZ(2080,3),VV(30,20,10),XP(30),XM(10),YP(20),YM(10),ZZ(10),
TSN	0004		2XX(40),YY(30),ILX,IUX,KUK,MBC,MBD,VRF,NFPS,SKPRFL,SKPLST
ŢŜŅ	0005		NF(IX, JX, KX) = IX + II * (JX-1) + II * JJ * (KX-1)
1 S N 1 S N	0005		A = 0
ISN	8000		CALL FIND(I,J,K)
T SN	0011		
I S N I S N	0013		NH=NF(I+1,J,K) NI=NF(I=1,J,K)
ŢŚŅ	0015		$D\bar{X} = XYZ(N\bar{H}, 1) - XYZ(NL, 1)$
ISN	0017	100	NH=NF(2, J,K)
1 S N T S N	0018 0019		DX=XYZ(NH,1) = XYZ(N,1) GD_TD_300
ŢŚŅ	0020	200	NL = NF(1I-1, J, K)
ISN	0022	300	CONTINUE
	0023		IF(J .EQ. 1) GD TO 400 TE(L .EQ. 11) GD TO 500
ĪŠŇ	0027		NH=NF(I, J+1, K)
1 S N 1 S N	0029		$DY = XYZ(NH_{2}) - XYZ(NL_{2})$
T S N T S N	0030	400	ÜÜ TO 600 NH=NE(1.2.K)
İŚN	0032	100	DY = XYZ(NH,2) = XYZ(N,2)
1 S N I S N	0034	500	GU IU 600 NL≕NF(I,JJ=1,K)
ISN	0035	600	DY = XYZ(N, 2) = XYZ(NL, 2)
TŠN	0037	000	1 F (MP . EQ. 1) GO TO 700
I S N I S N	0039		IF(MP .EQ. 2) GD. 10 800 RETURN
	0042	700	
ISN	0045		NH=NF(I,J,K+1)
I S N T S N	0046		NU=NH D7=XY7(NH-3) = XY7(N-3)
ŢŜŇ	0048	900	
ISN	0050	.000	IF(KEQ. 1) RETURN
T S N T S N	0052 0053		NL=NF(I,J,K=1) ND=NL
ĮŠŅ	0054	000	$\frac{DZ = XYZ(N,3)}{C} = XYZ(NL,3)$
IŚN	0056	500	RETURN
120	0057		END ,

A 27

ł

|

1

UATE

and the second sec

LEVEL	21.8 (JUN 74) OS/360 FORTRAN H
	COM	IPILER	OPTIONS - NAME = MAIN, OPT=02, LINECNT=60, SIZE=0000K,
1 S N	0002		SUBPOLITING ENSCHOLC, NOLIST, NODECK, LOAD, MAP, NOEDIT, NOID, NOXREF
Î ŜN	0003		COMMON/BK/IIM,IIP,JJM,JJP,KK,NTOT,IV,JV,II,JJ,M,N,VP(30).
			1XYZ(2080,3),VV(30,20,10),XP(30),XM(10),YP(20),YM(10),ZZ(10),
ISN	0004		COMMON ZCCCZCN+CS+CE+CW+CU+CD+CC+NN+NS+NE+NU+NU+NO
ŢŜŇ			$NF(IX, JX, KX) = IX + II^{*}(JX - 1) + II^{*}JJ^{*}(KX - 1)$
1 Z N	0006		A = 0.
I Ŝ N	0008		CALL FIND(I.J.K)
ISN	0000		ĮĘĆĮ.Ęų.į) 60 Tų 100
I SN T SN	0013		NH=NE([+], LK)
1 S N	0014		NL = NF(I-1,J,K)
15N 150	0015		DX = XYZ(NH, 1) - XYZ(NL, 1)
1 S N	0017	100	NH=NF(2,J,K)
ŢŚŅ	0018		DX = XYZ(NH, 1) - XYZ(N, 1)
I S N I S N	0019	200	00 10 300 NI=NECTIMIA.1.K)
1 S N	0021	200	$U \dot{X} = \dot{X} \dot{Y} \dot{Z} \dot{C} \dot{N}$, $\dot{1} \dot{D} = \dot{X} \dot{Y} Z (NL, 1)$
15N 150	0022	300	CONTINUE
1 S N	0025		IF(X - EQ - I) GO TO 500
1 SN	0027		NH=NF(I,J,K+1)
1 S N	0028		NL=NF(I,J,K=I) D/=XY/(NH=3) = XY/(NL_3)
ISN	ŌĒŌŌ		GO TO 600
	0031	400	$NH = NF(I_{1}J_{2})$
ŤŠŇ	0033		GO TO 600
ISN	0034	500	NL = NF(I, J, KK = 1)
ISN	0036	600	$DZ = XTZ(N_{3}J) = XTZ(NL_{3}J)$ $\Delta = DX * DJ/4_{-}$
IŚN	0037	000	IFCMP.EQ.ID GO TO 700
	0039		IF(MP.EQ.2) GO TO 800
ÍSN	0042	700	NN = 0
ĮŞŅ	0043		(FCJ.EQ.JJ) RETURN
1 2 N 1 2 N	0045		NH = NH (L, J+1, K) NN = NH
1 S N	0047		$DY = XYZ(NH_{2}) = XYZ(N_{2})$
	0048	000	GO TO 900
ISN	0050	800	IF(J_FQ_1) RETURN
ISN	0052		NL = NF(I, J = 1, K)
1 2 N 1 2 N	0053		NS=NL D¥=X¥Z(N₂2) ■ ¥¥Z(NL₂2)
ΊN	0055	900	C = A / DY
ISN	0056		RETURN
1214	0051		END

A28

DATE

QS/360 FORTRAN H

DATE

		COMPILER	OPTIONS - NAME = MAIN, OPT=02, LINECNT=60, STZE=0000K, SOURCE, EBCOIC, NOU IST, NODECK, LOAD, MAP, NOEOIT, NOTO, NOVDEE
ISN	0002		SUBROUTINE CEW(MP, $C_{3}A$)
1 2 1	0005		$1 \times 1 \times 2 \times 2 \times 1 \times 1 \times 1 \times 1 \times 1 \times 1 \times $
ISN	0004		COMMON/CCC/CN,CS,CE,CW,CU,CD,CC,NN,NS,NE,NW,NU,ND
	0005		NF(IX,JX,KX)= IX+ II*(JX=1) + II*JJ*(KX=1) A=0.
ISN	0007		
ISN	0009		IF(J.EQ.1) GO TO 100
1 S N Y S N	0011		1F(J ±EQ• JJ) 60 TO 200 NH=NF(I,J+1,K)
T S N T S N	0014		$NL = NF(I_{j}J = 1,K)$ $DY = XY/(NH,2) + XY/(NL,2)$
IŚN	0016	100	
ISN	0018	100	DY = XYZ(NH, 2) - XYZ(N, 2)
ISN	0019	200	NL=NF(1,JJ-1,K)
	0021	300	DY=XYZ(N,2) - XYZ(NL,2) Continue
T S N T S N	0023	-	IF(K .EQ. 1) GD TO 400 VE(K .EQ. KK) GD TO 500
ISN	0027		NH=NF(I, J, K+1)
ISN	0029		DZ = XYZ(NH, 3) - XYZ(NL, 3)
ISN	0030	400	NH=NF(I,J,2)
I SN I SN	0032		DZ=XYZ(NH,3) - XYZ(N,3) GD TD 600
	0034	500	$NL = NF(I_{*}J_{*}KK-1)$ $DZ = XYZ(N_{*}Z) = XYZ(N_{*}Z)$
ISN	ŎŎĴŚ	600	A=DY*DZ/4.
ĮŚN	0039		IF(MP .EQ. 2) GO TO 800
1 S N	0041	700	NE=0
T S N T S N	0043		IFC1.EQ.II) RETURN NH=NFCI+1.J.K)
Î Ŝ N T S N	0046		
ÎŚN	0048	0.0.0	
ISN	0049	800	IF(I .EQ. 1) RETURN
1 S N I S N	0052		NL=NF(I=1,J,K) NW=NL
TSN	0054	900	DX = XYZ(N,1) - XYZ(NL,1)
ÍSN	0056	500	RETURN
T 2 IA	0057		

A29

-

1

ł.

USZDOU FUKIKAN H

ISN	0002	COMPILER	OPTIONS - NAME= MAIN, OPT=02, LINECNT=60, S1/E=0000K, SOURCE, EBCDIC, NOLIST, NODECK, LUAD, MAP, NOEDIT, NOID, NOXREF SUBROUTINE FIELD	DATE
		CCCC	CONSTRUCTION OF COEFFICIENTS (MATRIX ELEMENTS) IN LINEAR DIFFERENCE EQUATIONS SOLUTION BY OVERRELAXATION	
ISN	0003	C	COMMON/BK/IIM, IIP, JJM, JJP, KK, NTOT, IV, JV, II, JJ, M, N, VP(30), 1XY/(2080,3), VV(30,20,10), XP(30), XM(10), YP(20), YM(10), ZZ(10),	
I S N I S N	0004 0005	c	COMMON/FLD/X(2080,2),CUEF(2080,7),INDX(2080,6),SKPCO COMMON/CCC/CN,CS,CE,CW,CU,CD,CC,NN,NS,NE,NW,NU,ND	
ISN	0006	ς.	INTEGER DO, ON/*NORT*/, OS/*SOUT*/, OE/*EAST*/, OW/*WEST*/, 1 OU/*UP */, OD/*DOWN*/ ASSUME ASYMPTOTIC MONOPOLE AT INFINITY	
ISN	0007	, L r	ALPHAF (UUU)=ABS(UUU/RS)	
ISN	8000	Č	NDO=POSITIVE FOR DIAGNOSTIC OUTPUT NOO=0	
I SSNNAR I S	0009 0010 00112 0012 0014 0015 0016 0017 0018 0017 00019 00021 00023	100 200 300	<pre>WRITE(M,1000) 0 FDRMAT(1H1/18H0FIELD CALCULATION) WRITE(M,2000) 0 FORMAT(///1X,17HCOEFFICIENT ARRAY) X0=.5*XP(IV) Y0=.5*YP(JV) Z0LD=0. D0 600 N=1,NTOT RS=(XYZ(N,1)-X0)**2 +(XYZ(N,2)-Y0)**2 +XYZ(N,3)**2 CALL FIND (1,J,K) IF(ZZ(K).LE.Z0LD.AND.N.GT.1) G0 T0 200 Z0LD=ZZ(K) WRITE(M,3000) K,ZZ(K) 0 FORMAT(//1X,2HZ(,12,2H)=,F6.3/ 1 12X,1HD,17X,1HS,17X,1HE,1X,1HE,1X,1HE,1X,1HE,1X,1HE,1X,1HE,1X,1HE,1X,1HE,1X</pre>	
Τ 2 14	0024		MODIFICATION TO SOLVE HELMHOLTZ EQUATION USING LINEARIZED SPACE CHARGE. HELM = DEBYE-LENGTH-LIKE PARAMETER. (ASSUMES POTEN- TIALS ARE DIMENSIONLESS)	
111111111111111 SSSSSSSSSSSSSSSSSSSSSS	0025 00278 002278 002278 000231 00031 000335 000337 000337 00034 1 00044 1 00044 1	888	HELM=0.0 VOLSQ=1. DO 300 MP=1,2 CALL CNS(MP,C,AREA) IF (MP.EQ.1) DO=ON IF (MP.EQ.2) OD=OS IF (ND0.GT.0) WRITE (M.8888) N.I.J.K.OD,AREA,C FORMAT(1X.18HN,I.J.K.OD,AREA,C=,I4,2X.3I3,1X.A5,1P2E16.4) CC=CC+C IF(C.GT.0.) GD TO 250 YYY=XYZ(N.2)-YO ALPHA=ALPHAF(YYY) IF (ND0.GT.0) WRITE (M.999) N.I.J.K.ALPHA FORMAT(1X.14HN.T.I.K.ALPHA=.T/2) 2X.2ALPHA	
ISN	0043	999	1F (NUU_GI.U) WRITE (M.999) N.I.J.K.ALPHA FORMAT(1X,14HN,I.J.K.ALPHA=,I4,2X,3I3,1PE16.4)	

A30

15N 0044 300 16NMTNUE 15N 0050 V0150=V0150*AREA 15N 0051 D0 = V0150*AREA 15N 0051 D0 = V0150*AREA 15N 0052 CALL CEW(M+1, C, AREA) 15N 0053 IF (M+1, E0, 2) D0 = 00 15N 0057 IF (M+1, E0, 2) D0 = 00 15N 0057 IF (M+1, E0, 2) D0 = 00 15N 0057 IF (M01, E0, 1) D0 = 00 15N 0050 IF (C, GT, 0, 350 15N 0060 IF (C, GT, 0, 350 15N 0063 ALPHAFALVXX) 15N 0064 IF (M00, GT, 0) WRITE (M, 9993) N, I, J, K, ALPHA 15N 0065 IF (MP, E0, 1) DE 15N 0066 GEC+AREA 15N 0067 150 (M, 2, AREA) 15N 0071 400 15N 0073 D0 500 (MP=1, 2 15N 0074 GAL (UD(M, 2, AREA) 15N 0079 IF (M1, E0, 2) D0 = 00 15N 0079 IF (M1, E0, 2) D0 = 00 15N 0079 IF (M1, E0, 2) D0	
15N 00001 V0L30*V0L30*V0L30*V0L30 15N 00051 CALL CEW(MM;C,AREA) 15N 00051 IF (MP:EQ:1) 00=0E 15N 00053 IF (MP:EQ:1) 00=0E 15N 00054 IF (MP:EQ:1) 00=0E 15N 00057 IF (MP:EQ:1) 00=0E 15N 00057 IF (MP:EQ:1) 00=0E 15N 00050 IF (MO:GID) WRITE (M.9999) N.I.J.K.OD.AREA,C 15N 0062 XXX=XYZ(N:J)=X0 15N 0063 ALPHA=ALPHAF(XXX) 15N 0064 IF (MO:GID) WRITE (M.9999) N.I.J.K.ALPHA 15N 0064 IF (MP:ED:2) CW=C 15N 0064 IF (MP:ED:2) CW=C 15N 0064 IF (MP:ED:2) DD=0U 15N 0073 IF (MP:ED:2) DD=0U 15N 0074 CALL CUUMP:C.AREA) 15N 0075 IF (MP:ED:2) DD=0U 15N 0075 IF (MP:ED:2) DD=0U 15N 0081 IF (C:GI:0) MRITE (M.9888) N.I.J.K.OD.AREA,C 15N 0082 IF (C:G:C:CC:C=C:O.O.SAND.MP:EO.2)JGO TO 450 15N 0082 IF (MP:EO:2) CD=C 15N 0084 IF (MP:EO:2) CD=C 15N 0085 IF (MP:EO:2) CD=C 15N 0084 450 15N 0093 IF (MP:EO:2) CD=C 1	
ISN 00052 LALL CLEW(n', C, AKEA) ISN 00053 IF (MP, E0.1) DD=0E ISN 00054 IF (MP.E0.2) DD=0E ISN 00057 IF (MD.GT.0) WRITE (M.808) N.I.J.K.00.AREA.C ISN 0060 IF(C.GT.0.) GD TO 350 XXX=XYZ(N.1)=X0 ALPHA=ALPHAF(XXX) ISN 0064 IF (MD.GT.0) WRITE (M.999) N.I.J.K.ALPHA ISN 0064 IF (MD.GT.0) WRITE (M.999) N.I.J.K.ALPHA ISN 0064 IF (MP.E0.2) CE=C ISN 0067 JD 500 MP.I.C. ISN 0067 IF (MP.E0.2) CE=C ISN 0073 D0 500 MP.I.C. ISN 0074 CALL CUD(MP,C.AREA) ISN 0075 IF (MP.E0.2) DD=00 ISN 0076 IF (MP.E0.2) DD=00 ISN 0077 IF (MP.E0.2) DD=00 ISN 0081 CC=CC + C. ISN 0082 IF (MD.GT.0) WRITE (M.888) N.I.J.K.OD.AREA.C ISN 0081 CC=CC + C. ISN 0082 IF (MD.GT.0) WRITE (M.999) N.I.J.K.ALPHA ISN 0084 IF (MP.E0.1) CU=C ISN 0085 IF (MP.E0.2) DD=00 ISN 0084 IF (MP.E0.2) CD=C ISN 0085 IF (MP.E0.2) CD=C ISN 0093 VOLSO=VOLSO*AREA	
ISN 0057 ISN 0057 ISN 0060 ISN 0060 ISN 0060 ISN 0064 ISN 0064 ISN 0064 ISN 0064 ISN 0066 ISN 0066 ISN 0066 ISN 0066 ISN 0067 ISN 0067 ISN 0067 ISN 0067 ISN 0072 ISN 0075 ISN 0075 ISN 0075 ISN 0075 ISN 0075 ISN 0076 ISN 0076 ISN 0076 ISN 0077 ISN 0076 ISN 0076 ISN 0076 ISN 0076 ISN 0077 IF (MP-E0-2) CHOR ISN 0077 IF (MP-E0-2) CHOR ISN 0076 ISN 0077 IF (MP-E0-2) OD=00 ISN 0076 ISN 0076 ISN 0076 ISN 0076 ISN 0077 IF (MP-E0-2) OD=00 ISN 0076 ISN 0076 ISN 0076 ISN 0076 ISN 0082 ISN 0084 ISN 0086 IF (MP-E0-1) CU=C ISN 0084 ISN 0087 IF (MP-E0-2) CD=C ISN 0090 IF (MP-E0-2) CD=C ISN 0093 IF (MP-E0-2) CD=C ISN 0094 ISN 0095 IF (MP-E0-2) CD=C ISN 0095 IF (MP-E0-2) CD=C ISN 0096 CALL RELAX.	
ISN 0059 CC=CC+C GD TO 350 ISN 0062 XX×=XYZ(N,1)=X0 ISN 0063 ALPHA=ALPHAF(XXX) ISN 0064 CC=CC+AREA*ALPHAF(XXX) ISN 0066 GC=CC+AREA*ALPHAF(XXX) ISN 0066 IF(MP=E0.1) CE=C ISN 0071 400 ISN 0072 VOLSQ=VOLSO*AREA ISN 0073 D0 500 MP=1,2 ISN 0074 IF (MP=E0.1) D0=0U ISN 0075 IF (MP=E0.2) D0=0U ISN 0076 IF (MP=E0.2) D0=0U ISN 0077 IF (MP=E0.2) D0=0U ISN 0079 IF (ND0.GT.0) WRITE (M,888) N,I,J,K,00,AREA,C ISN 0079 IF (ND0.GT.0) WRITE (M,888) N,I,J,K,00,AREA,C ISN 0081 CC=CC+C ISN 0082 IF (ND0.GT.0) WRITE (M,999) N,I,J,K,ALPHA ISN 0084 FO 0.070 ISN 0084 FO 0.070 ISN 0084 FO 0.070 ISN 0084 FO 0.000 ISN 0084 FO 0.000 ISN 0092 SOD ISN 0093 IF (MP=E0.2) CD=C ISN 0094 YOLSO*AREA ISN 0095 IF (MP=E0.2) CD=C ISN 0097 CAL	
ISN 0062 XX = XY Z (N, 1) - X0 ISN 0063 ALPHA=ALPHAF(XXX) ISN 0064 IF (ND0_GT.0) WR ITE (M,999) N,I,J,K,ALPHA ISN 0066 GC=CC + AREA*ALPHAF(XXX) ISN 0067 350 IF(MP + E0 - 1) CE=C ISN 0071 400 CONTINUE V0LS0=V0LS0*AREA D0 500 MP=1,2 ISN 0072 V0LS0=V0LS0*AREA ISN 0074 CALL CUD(MP,C,AREA) ISN 0075 IF (MP + E0 - 1) DD=00 ISN 0077 IF (MP + E0 - 1) DD=00 ISN 0081 CC=CC+(AREA*ALPHAF(XYZ(N,33)) ISN 0082 IF(C.GT + 0 - 0R + (C + E0 + 0 - AND - MP + E0 - 2))GO TD 450 ISN 0082 IF(C.GT + 0 - 0R + (C + E0 + 0 - AND - MP + E0 - 2))GO TD 450 ISN 0082 IF(C.GT + 0 - 0R + (C + E0 + 0 - AND - MP + E0 - 2))GO TD 450 ISN 0084 IF(MP + E0 + 1) CU=C ISN 0085 IF (ND0 - GT + 0) WR ITE (M,999) N,I,J,K,ALPHA ISN 00864 IF(MP + E0 + 1) CU=C ISN 0087 CC=CC + AREA*ALPHAF(XYZ(N,33) ISN 00980 IF(MP + E0 + 2) CD=C ISN 0094 YOLSO=VOLSO*AREA ISN 0095 IF(MP + E0 + 0 + C) CC=CC + VOL/HELM**2 ISN 0097 CALL AREAX	
ISN 0064 ISN 0066 ISN 0067 ISN 0067 ISN 0067 ISN 0067 ISN 0069 IF(MP.EQ.2) CW=C ISN 0072 VOLSQ=VOLSQ*AREA VOLSQ=VOLSQ*AREA VOLSQ=VOLSQ*AREA ISN 0075 IF (MP.EQ.2) DD=OU ISN 0077 IF (MP.EQ.2) DD=OU ISN 0077 IF (MP.EQ.2) DD=OU ISN 0077 IF (MP.EQ.2) DD=OU ISN 0077 IF (MP.EQ.2) DD=OU ISN 0081 CC=CC+C ISN 0081 ISN 0084 ISN 0084 ISN 0085 IF (ND0.GT.0) WRITE (M.888B) N.I.J.K.DD.AREA.C CC=CC+C ISN 0081 ISN 0084 ISN 0085 IF (ND0.GT.0) WRITE (M.999) N.I.J.K.ALPHA CC=CC+AREA*ALPHAF(XYZ(N.33)) ISN 0085 ISN 0088 ISN 0098 ISN 0093 VOLSQ=VOLSQ*AREA CC=CC+VOL/HELM**2 CALL ARRAY ISN 0099 ISN 0099 CALL AREAX PACK CALL ARRAY CALL ARRAY CALL AREAX	
ISN 00667 350 IF(MP.E0.1) CE=C ISN 0071 400 CDNTINUE ISN 0072 VOLSO=VOLSO*AREA VOLSO=VOLSO*AREA VOLSO=VOLSO*AREA ISN 0073 D0 500 MP=1,2 ISN 0074 CALL CUD(MP,C,AREA) ISN 0075 IF (MP.E0.1) DD=00 ISN 0077 IF (MP.E0.2) DD=00 ISN 0081 CC=CC+C ISN 0082 IF(C.GT.00R.(C.E0.0AND.MP.E0.2))GO TO 450 ISN 0084 ALPHA=ALPHAF(XYZ(N,3)) ISN 0085 IF(MP.E0.1) WRITE (M,999) N.I.J.K.ALPHA ISN 0085 IF(MP.E0.1) CU=C ISN 0086 IF(MP.E0.2) CD=C ISN 0088 IF(MP.E0.2) CD=C ISN 0090 IF(MP.E0.2) CD=C ISN 0092 SOD ISN 0093 VOLSO=VOLSO*AREA VOLSO=VOLSO*AREA VOLSO) ISN 0095 IF(MP.E0.2) CD=C ISN 0096 CONTINUE VOLSO=VOLSO*AREA VOLSO) ISN 0097 GOO ISN 0097 CALL ARRAY ISN 0098 GOO CALL ARRAY ISN 0099 REFLURN	
ISN 0071 400 CONTINUE VOLSQ=VOLSQ*AREA 00 500 MP=1,2 ISN 0073 CALL CUD(MP.C,AREA) ISN 0074 CALL CUD(MP.C,AREA) ISN 0075 IF (MP.E0.1) 0D=0U ISN 0077 IF (MP.E0.2) DD=0D ISN 0081 CC=CC+C ISN 0082 IF(C.6GT.0.) WRITE (M,8888) N,I,J,K,DD,AREA,C ISN 0082 IF(C.6GT.0.) WRITE (M,999) N,I,J,K,ALPHA ISN 0084 ALPHA=ALPHAF(XYZ(N,3)) ISN 0085 IF (ND.GT.0) WRITE (M,999) N,I,J,K,ALPHA ISN 0086 IF(MP.E0.2) CD=C ISN 0087 CC=CC+AREA*ALPHAF(XYZ(N,3)) ISN 0088 450 IF(MP.E0.2) CD=C ISN 0098 GON IF(MP.E0.2) CD=C ISN 0093 VOLSQ=VOLSQ*AREA YOLSQ=VOLSQAREA YOL=SQRT(YOLSQ) ISN 0094 VOLSQ=VOLSQ) ISN 0095 IF(HELM.GI.0.) CC=CC+VOL/HELM**2 ISN 0097 CALL ARRAY ISN 0098 600 CALL ARRAY ISN 0099 CALL RELAX	
ISN 0073 D0 500 MP=1,2 ISN 0074 CALL CUD(MP,C,AREA) ISN 0075 IF (MP.E0.1) DD=0U ISN 0077 IF (MP.E0.2) DD=0D ISN 0079 IF (ND0.GT.0) WRITE (M,888) N,I,J,K,00,AREA,C ISN 0081 CC=CC+C ISN 0082 IF(C.GT.0DR.(C.E0.0AND.MP.E0.2))GO TO 450 ISN 0084 ALPHA=ALPHAF(XYZ(N,3)) ISN 0085 IF (ND0.GT.0) WRITE (M.999) N,I,J,K,ALPHA ISN 0086 IF (ND0.GT.0) WRITE (M.999) N,I,J,K,ALPHA ISN 0087 IF (MP.E0.1) CU=C ISN 0098 450 ISN 0092 500 ISN 0093 VOLSO=VOLSO*AREA VOLSO=VOLSO*AREA VOLSO=VOLSO) ISN 0094 VOLSO=VOLSO) ISN 0095 IF(HELM.GT.0.) CC=CC+VOL/HELM**2 ISN 0097 CALL ARRAY ISN 0098 600 C CALL RELAX C CALL RELAX	
ISN 0075 IF (MP+E0.2) DD=00 ISN 0079 IF (MP+E0.2) DD=00 ISN 0079 IF (MD-E0.2) DD=00 ISN 0081 IF (ND0.GT.0) WRITE (M,888) N,I,J,K,D0,AREA,C ISN 0081 ICC=CC+C ISN 0082 IF(C.GT.00R.(C.E0.0AND.MP.E0.2))GO TO 450 ISN 0084 ALPHA=ALPHAF(XYZ(N,3)) ISN 0085 IF (ND0.GT.0) WRITE (M.9999) N,I,J,K,ALPHA ISN 0087 ICC=CC+AREA*ALPHAF(XYZ(N,3)) ISN 0088 450 ISN 0098 IF (MP.E0.1) CU=C ISN 0090 IF (MP.E0.2) CD=C ISN 0093 VOLSQ=VOLSQ*AREA VOLSQ=VOLSQ*AREA VOLSQ=VOLSQ*AREA VSN 0093 IF (HELM.GT.0.) CC=CC+VOL/HELM**2 ISN 0094 VOLSQ=VOLSQ) ISN 0098 600 CALL ARRAY CALL ARRAY ISN 0099 GAUL RELAX ISN 0099 CALL RELAX	
ISN 0079 IF (ND0.GT.O) WRITE (M,888) N,I,J,K,D0,AREA,C ISN 0081 IF(C.GT.O.OR.(C.EO.O.AND.MP.EQ.2))GO TO 450 ISN 0084 IF(C.GT.O.OR.(C.EO.O.AND.MP.EQ.2))GO TO 450 ISN 0085 IF(ND0.GT.O) WRITE (M,999) N,I,J,K,ALPHA ISN 0087 CC=CC+AREA*ALPHAF(XYZ(N,3)) ISN 0087 IF(MP.EQ.1) CU=C ISN 0090 IF(MP.EQ.2) CD=C ISN 0092 500 ISN 0093 VOLSQ=VOLSQ*AREA VOLSQ=VOLSQ) IF(HELM.GT.O.) CC=CC+VOL/HELM**2 ISN 0098 600 CUNTINUE CALL ARRAY ISN 0099 CALL RELAX ISN 0099 CALL RELAX	
ISN 0082 IF(C.GT.0DR.(C.EQ.0AND.MP.EQ.2))GO TO 450 ISN 0084 ALPHA=ALPHAF(XYZ(N,3)) ISN 0085 IF (NDO.GT.0) WRITE (M.999) N.I.J.K.ALPHA ISN 0087 CC=CC+AREA*ALPHAF(XYZ(N,3)) ISN 0088 450 ISN 0090 IF (MP.EQ.1) CU=C ISN 0092 500 ISN 0093 VOLSQ=VOLSQ*AREA VOLSQ=VOLSQ*AREA VOL=SQRT(VOLSQ) ISN 0095 IF (HELM.GT.0.) CC=CC+VOL/HELM**2 ISN 0098 600 CALL ARRAY ISN 0099 CALL RELAX MENN CALL RELAX	
ISN 0085 IF (NDO.GT.0) WRITE (M.999) N,I,J,K,ALPHA ISN 0087 CC=CC+AREA*ALPHAF(XYZ(N,3)) ISN 0088 450 IF(MP.EQ.1) CU=C ISN 0090 IF(MP.EQ.2) CD=C ISN 0092 500 CONTINUE ISN 0093 VOLSQ=VOLSQ*AREA ISN 0094 VOL=SQRT(VOLSQ) ISN 0095 IF(HELM.GT.O.) CC=CC+VOL/HELM**2 ISN 0097 CALL ARRAY ISN 0098 600 C CALL RELAX ISN 0099 CALL RELAX	
▶ IŠN 0088 450 IF(MP.E0.1) CU=C ₩ ISN 0090 IF(MP.E0.2) CD=C ₩ ISN 0092 500 CONTINUE ISN 0093 VOLSQ=VOLSQ*AREA ISN 0094 VOL=SQRT(VOLSQ) ISN 0095 IF(HELM.GT.0.) ISN 0097 CALL ARRAY ISN 0098 600 C ISN 0099 ISN 0099 CALL RELAX ISN 0099 CALL RELAX	
ISN 0092 500 CONTINUE ISN 0093 VOLSQ=VOLSQ*AREA ISN 0094 VOL=SQRT(VOLSQ) ISN 0095 IF(HELM.GT.0.) ISN 0097 CALL ARRAY ISN 0098 600 C ISN 0099 ISN 0099 CALL RELAX ISN 0099 CALL RELAX	
ISN 0094 VOL=SQRI(VOLSO) ISN 0095 IF(HELM.GT.0.) CC=CC+VOL/HELM**2 ISN 0097 CALL ARRAY ISN 0098 600 ISN 0099 CALL RELAX ISN 0099 CALL RELAX	
ISN 0097 ISN 0098 C ISN 0099 C ISN 0099 C CALL RELAX RETURN	
ISN 0099 CALL RELAX	

. ,

US1360 FORTRAN H

COMPILER OPTIONS - NAME = MAIN, OPT=02, LINECNT=60, SIZE=0000K, SOURCE, EBCDIC, NOLIST, NODECK, LOAD, MAP, NOEDIT, NOID, NOXREF

ISN 0002 ISN 0003 ISN 0004 ISN 0005

BLOCK DATA

. DATE
Appendix B

Computer Programs: Electric Fields Produced by Cloud-to-Ground Lightning Flashes

The following four pages contain a listing of the computer programs written to compute the electric field produced on the ground as a function of time and distance from "ground zero" by the charges associated with a cloudto-ground lightning flash. This program was written by Jerry L. Bohannon.

```
TITL CLOUD-TO-GROUND SIMULATION
BATCH .
LAE= STROKE
ØBUG
     IMPLICIT' INTEGER+2 ( I-N)
     DIMENSION RSI(2.101. RSIS(2.10)
     DATA TPIE/5.56062E-11/+TIPIM/2.0E-7/
     DATA ICARDS/ C//. ITERM/ T/ VIV/ Y-/.LN/ N/
     DATA IMA/X 1015-/.ICY/X-1116-/.IBEL/X-0707-/.PBG/X 1E10-/
     DATA IRD/X 1011-/.IGR/X-1012-/.IYE/X 1013-/.E8L/X-1014-/
     DATA 147N/X 0E /+ 147F/X 0F /+ NULL/X 00 /+ IHOME/X 08 /
     DATA IBGY/X 1E13 /
     DATA RSI(1.1)/0.0/.RSI(2.1)/0.0/.RSI(2.10)/0.0/
     DATA PIE/3-1415926/ 1
     DATA RH0/2_0 E-94
     CRODT = 1./3.
     WR1TE(14.1)
     FORMAT( "1")
     .00 1000 I=1. 32000
000 K=1
     WRITE(14.4) ILATN. IMA. IBEL.IATE
     FORMAT(2A2_TLIGHTNERIG BOLT SIMULATION+ ROIT_2A2)
     WRITE(14.11) IBL-IGR
0
     FORMAT(A2. READ DATA FROM CARCS OR TERMINAL -42)
1
     READ(15,12) :IWHERE
2
     FORMAT(A1)
     IFC OWNERE .EQ. ICARDS RGOTO 50
3
     IFCIHHERE_EQ_ITERN) #GCTD 70
     WRITE(14,14) IRD-IRG
     FORMATCAZ TRY AGAIN .A2)
4
     GOTO 10
     READ(1,51.END=999) YO, QCL, QSL, VSL, VRSJ(GRSI(L,J), I=1,2), J=2,9)
0
     FORMAT(5(F6_0.2X)/8(2F10.(/ #))
L
     GOTO 90
0
     WRITE(14.71) IMA
     FORMAT(A2." ENTER FLOATING POINT INITIAL CONDITIONS F6.0")
ł
     WRITE(14,75 k IBL. ICY
5
     FORMAT(A2, ENITUAL HEIGHT KM-. A2)
     READ(15,73) IYO
     WRITE(14,76) IBL. (CM
     FORNATIA2. CLOUD CHARGE COULT.A2).
6
     READ(15.73) $QCL 1
     WRITE(14,72) IBL. ICY
     FOR MATIA2. STEPPED LEADER CHARGE COULT. A2)
2
     READ(15.73) :05L
3
     FORMAT(F6_0)
     WRITE(14.74) IBL.ICM
1
     FORMAT(A2, STEPPED LEADER VELCCITY E5 M/S . A2)
     READ(15.73) USL (
     WRITE(14.77)% IBL. ICY
7
     FORMAT(A2, RETURN STROKE VELOCITY ET M/S", A2)
     READ(15.73) :VRS
3
     WRITE(14,80) IBL.ICM
     FORMAT(A2, ENTER 8 TIPES (MS) AND CURRENTS (MAMP) TO DEFINE THEM!
ï

    return stroke 2F10.07/11-191.11-.421

     00 82 J=2.9
     READ(15.81) RSI(1.J) RSI(2.J)
     IF(RSI(1.J)_LT_)_JGCTO 78
                                             B2
     CONT INUE
```

	•		
81	FORMAT(2F10_0)		
90	VSL S= VSL		
	RSI(1.10)=RSI(1.9)		
	200 1002 J=1.10		
	RSIS(1.J)=RSI(1.J)		
	RS[5(2+J)=RS[(2+J)		
	KS141.JJ=KS1(1.JJ/1000.		
1003	K314/2#JJ=K31 (2#JJ+1909a CONTINUS		
1002	-CUNALNUE -DELDEL		
	-4CC 		
	432- 432 YAS=YA		
	DQ 1005 1=2. 9		
	A=R\$1(2.1)		
	B=RSI(2,I-1)		
	C=RSI(2+I+1)		
	IFCA_GT.B.AND.A.GT.C) IQT=1		
L005	ICONTINUE		
	VRSS=VRS		
100	VSL=-VSL+1.0E5		
	Y0=Y0+100C.0		
	IVRS=VRS+1.0E7		
	(D(SL=1.)E-4 *		
195	$\frac{1}{1}$		
ET 0	PURMATIAL HALLS RAULUS ALT		
111	MKIJEKIJ9III J IKUGEBUT MKIJEKIJ9III J IKUGEBUT		
	$\frac{1}{2} \frac{1}{2}	661	K=1
	N-1 1817F61323493		
149	FORMATCIX-TSI UNITST//)		
.50	WRITE(13, 151) YOS, OCL, OSL, VSLS, VRS.S.RSIS, D		
151	FOR HAT(1X, "HEIGHT=".F7.10," KM / 1XQ-CLOUD= ".F7.1." C'/		
	\$1X. Q-LEADER F6. 1. C. /1X. V-LEADER F6. 1. E5 M/IS /1X.		
	\$ TV-RETURN= T.F6.1. F7. M/ST/1X. RETURN STROKE MS. KAMPT/		
	\$10(2F10_4/#//IX-TRADIUS= ".F6.0." M"///)		
	WRITE(13.152) [RG.IRD		
52	FORMAT(1X.		
	\$A2+8X+TTT+15X+TET+15X+TQT+16X+THT+A2}		
	ST DA~ CODI(C) DA37 2FK 45 - 1 ~ 0 % Ft D4 2 7		
	SIRACI=SARTASIRAC254510AC2		
	DI=1 ()/D		
	X=XU		
	FMAX=0_0		
00	CONDINUE		
	SLRX2=1.0/(D+D+X+X)		
	SLRX=SQRT(SLRX2)		
	SLR X 3 2= SL RX + SLR X 2		
	E=QSL/TPIE/Y:O+(SLRX-SLRY;)+SLRCCL+YC/TPIE+(QCL=QSL+(1X/YO))		
	IF(ABS(E)_GT_ABS(ENAX)) _ETAX=E		
	IF(ABS(E)_LTI-5-0E4) GCT 0 211		
<i></i>	WRITE(13.210)T.E.X		
1.0	ECRMATCEIA 7. E1:6 0.168. E16 11		

B3

- - ---

215	FORMAT(F16.7. FP6.C. F16.5.F16.1.110.F16.7.F16.)
211	IF(ABS(E),Lπ.5.0E4.OR.X_(GT.0.5E3) DTSt=1.0E-3
	T=T+DTSL
	IF(X_LT_50_) GOTO 50)
	X=YO+VSL +T
	IF(X_LT.J_0) GOTO 501
	DTSL=1.0E-4 1
	GOTO 200
500	CONTINUE
	T=T-DISL
	WRITE(13,501)
501	FERMAT(1X. T)
	ESL=E
	ORC=OSI-OCI
	SI DAUS= AC #21 DULI
) FC	CUNTINUE
	CALG LUKENI (IKSI + U+UF4+ IK+IK I+ KIK II + KULU)
	IF(RILE_G_G) GUIU-600
	Y=YRS+TR
	IF(Y.GT.YC) IGOTO 522
	P=QJY
	SLRYR=1_0/SQRT(D+D+Y+Y)
	E=ESL+P+(DI-SLRYRJ/TPIE
	IF(ABS(E).GTLABS(ENAX)) _EPAX=E
	IF(IQT.LT.KRNT.AND.ABS(E).LT.5.0E4) GOTO 510
	WRITE(13-215) T-E-Q-Y-KRINT -TR-RI
	GOTO 510
22	WRITE(13,501)
20	CONTIENUE
	P=Q_Y0
	IF(P_GT_PL) GOTO 572
	E=ESL+P+(DI-SLRY)/TPIE
	IF(ABS(E).GT.ABS(EMAX)) .EMAX=E
	IF(1QT.LT.KRNT.AND.ABS(E).LT.5.0E4) GOTO 521
	WRITE (13,215) T. E. Q. YO. KIRNT. TR. RI
21	CALL CURENT (IRSI-D-DT-TR-IRI-KORNT-KOLD)
	IF(RILE.0.0) GDTD 6.
	T=T+DI
	G019 520
12	WRITE(13-501)
10	
	0RS=0+0SI
	IFLORS OF ORICE COTO (600
	$IE(ARS/E) \cap T ARS/ENARY) = EAAW-C$
	IFLIDT. LT.KONT AND ARSEPTATE S OFFLA COTO 571
	WRITE (13, 215') T_E_D_IYP_KIDAT_ITD_OI
• 1	TALL TO THOSE AT TO TO TO TO TANDAT AND AND AND AND AND AND AND AND AND AND
£	ISZOTIE A A CONTRIA CONTRIA AND CONTRIANCE AND CONT
	1148 LE. C. V / BUTB DUB T-TANT
	COTA 570
· -,	UDITE (12 500) O EMAN
J	·WRL+E&LJ+フダダナ リーモビスス

```
99
     FOR MAT(//1X. CR T= ... F10.14. C-.5X. EMAX= ... EI 2.4. V/M )
     WRITE(14,601) IBG,IBL,IGR,IBEL
.31
     FORMAT( 2A2- DO YOU WANT MANTHER RADIUS - 2A2)
02
     READ(15,12) :IAD
     IF(IAD_EQ.IY) GOTO 1.5
     IF(IAD_EQ_IN) GOTO 650
     WRITE(14,14) IRD. IGR:
     GOTO 602
50
     WRITE(14.651) IBL.IGR
51
     FORMAT(A2, DO YOU WANT AINCTHER EVENT A2)
52
     READ(15,12) IE
     IFCTE.EQ.IVE GOTO 13
     IFTELED. IN: GOTO 950
     WRITE(14-14) IRD-IGR
     GOTO 652
99
     WRITE(14,998) IRD
98
     FORMATCA2" NO MORE CARDS ")
5 V
     WRITE(14,951) INA.IGR
51
     FORMAT(A2. TEND OF PROGRAM . A2)
     STOP 1
     END
LA8= CURENT
0'84G
     SUBROUTINE CURENT(RSI.O., DT. TR.RI.KIRKT.KOLD)
     IMPLICIT INTEGER #2 ('I-N)
     DIMENSION RSI(2.10) :
     IF(KOLD.EQ.KRNT) GOTO 50
     TAU=RSI(1.KRINT+1)-RSI(1.KRNT)
     IF(TAULLE.0_0) GOTD 1100
     IF(TAU.LE.1. 0E-5) DT=0.5E-6
     IF(TAU.GT.1_0E-5.AND.TAU.LE.1.0E-4) DT=1.0E-5
     IF(TAU.GT.1.0E-4.AND.TAU.LE.1.0E-31 DT=1.0E-4
     IF(TAU.GT.1.0E-3_AND.TAU.LE.1.0E-2) DT=1.0E-3
     IF(TAU.GT.I. DE-2 JAND. TAU.LE.1.0E-1) DT=1.0E-2
     IF(TAU.GT.1. CE-1) DT=0.025
     DEL I = (RSI(2 - KRNT+L) - RSI(2 - KRNT)) I / TAU
     IF(Q1EQ.0.0) RI1=0.0
     TRR=TR+DT
     IFCTRR.GT_RSI(1,KRNT+1)) CT=RSI(1,KRNT+1)-TR
     RI=RI+DELI+DT
     IR 12=R 1
     Q=Q+DT+(RI2+RI1)/2.
     TR=TR+DT
     KCLD=KRNT
     IF(IR.GE.RSI(I.KRNT+1)) KENT=KRNT+1
     RII=RI2
     RETURN
НŬ.
     CENTLINUE
     RI=0_0
     RETURN
     END
END
```

Appendix C

Computer Output Listing: Cloud-to-Ground Lightning Flash Density

The following seven pages are the computed output from the program that calculates the lightning flash density (cloud-to-ground) from the monthly thunderstorm days using the Pierce Conversion. This program, written by Jerry L. Bohannon, uses the Normals, Means and Extremes data from "Local Climatological Data -- Annual Summaries for 1977" published by the National Oceanic and Atmospheric Administration, Environmental Data Service, Asheville, North Carolina (available also on magnetic tape).

```
VCOMPUPOT [3]V
      V AAREWID COMPUPET HI
[[] a
          THIS FUNCTION COMPUTES THE ELECTRIC POTENTIAL IN A REGION ARROUND
[2] , ONE BILLBOARD OF THE RECTENNA, THE HEASUREMENT AREA STARTS 31.96 WETERS
[3] . FROM THE LEFT HAND EDGE OF THE RECTEMMA AND EXTENDS TO THE RIGHT 'AC' METERS.
[4] & THE BOTTOM OF THE MEASUREMENT AREA IS AT GROUND LEVEL, WHILE THE TOP
[5] # IS 'UP' WETERS HIGH,
[6] # THE RESOLUTION IS CONTROLLED BY THE ARGUMENTS OF THE FUNCTION, THE
[7] & LEFT ARGUMENT SPECIFIES THE NUMBER OF COLUMNS IN THE OUTPUT, THE RIGHT
13] A ARGUMENT IS THE NUMBER OF ROWS,
[9] A THE FORMAT OF THE OUTPUT IS AN ARRAY OF NUMBERS IN SCIENTIFIC HOTATION
[10] . WITH ONLY ONE SIGNIFICANT DIGIT PRINTED.
[11] POT+(HI, HID)/0
[12] GPP+1
[13] 04841
F14] LODPH:H1+(G-1)XUP+HI-1
[15] R+1 ·
[16] LOOPL;L1+31,96+(R-1)XAC+WID-1
[17] POT[0;8]+L1 FIELD H1
[18] R+R+1
[19] 4(R(#ID)/LOOPL
[20] 0+0+1
[21] →(0(HI)/LOOPH
[22] TRY+TRY+1
[23] DA+1#31075.
[24] 'THIS IS RUN NUMBER ', (+TRY), DATE
[25] 'THE CALCULATED VALUES OF THE ELECTRIC POTENTIAL, IN VOLTS, ARE SHOWN BELOW,
[26] ''
[27] **
[28] AAR4POT49POT
[29] 5/04V[201] ·
[30] 3PF+10
[31] 'THE VECTOR OF LINE CHARGES USED IS ... ', (+LA), ' COULORDS FER METER, '
[32] 'THE SUN OF THE LINE CHARGES IS ', (++/LA), ' COULOMBS PER METER, '
[33] 'THE TOP OF THE MEASUREMENT ARRAY IS ', (, UP), ' METERS HIGH, '
[34] "THE RIGHT EDGE OF THE ARRAY IS ", (+L1)," METERS FROM THE FIRST BILLBOARL,"
[35] "THERE ARE ',(+AC+WID),' COLUMNS FER METER, AND ',(+UP+HI),' ROWS PER METER (MITHE ARRAY)'
[36] 'RUN NO, ', (+TRY), DATE
[37] [PP+1
[33] 5/34YE2013
[39] +(SISH=0)/0
[40] "THE ARRAY BELOW SHOWS THE SIGH OF EACH OF THE HUMBERS IN THE ABOVE ARRAY."
[41] **
[42] XPOT
[43] 'THIS IS RUN NUMBER ', (+TRY), DATE
     7
```

```
VPROTECT []]V
     V WID PROTECT HI
E13 a
         THIS FUNCTION COMPUTES THE ELECTRIC POTENTIAL IN A REGION OF SPACE
[2] & DUE TO A CHARGED WIRE LOCATED SOME FIXED PERPENDICULAR DISTANCE FROM
[3] . THE TOP OF EACH BILLBOARD OF THE RECTEMNA. THE MEASUREMENT AREA IS
[4] & EXACTLY THE SAME AS THAT USED IN ((COMPUPOT)), AS WITH ((COMPUPOT))
[5] & THE RESOLUTION IS DETERMINED BY THE ARGUMENTS OF THE FUNCTION.
         THE FUNCTION DOES NOT PRINT ANY GUIPUT. THE OUTPUT IS CONTAINED IN
[6] a
[7] a THE VARIABLE, ((PROT)), THIS VARIABLE WILL HAVE THE SAME DIMENTIONS AS
[8] A ((POT)), THE VARIABLE CONTAINING THE OUTPUT FROM ((COMPUPOT)),
[9] PROT+(HI,WID) 0
[10] 0168161
[11] & ((LOOPH)) COMPUTES ALL OF THE VERTICAL INDICES.
[12] LOOPH: H2+(@1-1)xUP+HI-1
[13] R1+1
[14] # ((LCOPL)) COMPUTES THE HORIZONTAL INDICES AND CALLS ((FIELDW)).
[15] LOOPL;L2+31,96+(R1-1)xAC+WID-1
[13] PROT[0];R1]+L2 FIELDW H2
[17] R1+R1+1
[18] +(R1(WID)/LOOPL
E191 01+01+1
[20] →(@1(HI)/LOOPH
[21] PROTEEPROT
[22] TRY1+TRY1+1
[23] 'THIS IS RUN NUMBER ', (+TRY1),' OF PROTECT', DATE
[24] DPP+10
[25] 'THE PROTECTING WIRE IS LOCATED ', (+KU1), ' METERS FROMT THE'
[26] 'LEFT EDGE OF THE ARRY, AND ', (+SixXui), ' HETERS FROM THE BOTTOW, '
```

「「「「「「「」」」

y P4L FIELDW H [1] A THIS FUNCTION COMPUTES THE ELECTRIC POTENTIAL AT ANY POINT, (L,H), [2] A DUE TO THE CHARGED PROTECTION WIRE ABOVE THE BILLBOARD. THIS WIRE IS [3] # ASSUMED TO BE PARALLEL TO THE BILLBOARD AND LOCATED A PERPENDICULAR [4] & DISTANCE, ((SPACE)), FROM THE TOP OF THE BILLBOARD. [5] & THE CHARGE ON THE WIRE IS ((LW)). [6] LI1+15.93x⁻1+1H [7] HepLWepLW [8] LONG+12.24+23THTA+T30(+12.24)XSPACE [9] XJ1+,XJ1+LONGx20THTA+02+9 [10] \$1+30(02+9)+THTA [11] A1+L-XJ1 [12] I+1 [13] UI1+Hp0 [14] LOGP:MH1+((H-S1XKU1)#2)+MA1+(01-LI1[I])#2 [15] DH1+((H+S1xXJ1)+2)+HA1 [16] UI1[I]++/-(LW+52%50)/#(NH1+FH1)x0.5 [17] I+I+1 [18] +(I(H+1)/LCOP 2193 P++/911

7

7

VEIEFD [[]]A 7 UHLAL FIELD H

[2] & IN THE SPACE AROUND THE ARRAY OF FIVE BILLBOARDS. [3] LI+15,93x⁻1+1^N [4] XJ4(9,38x(M)+M+PLA [5] S+3032÷9 [6] A+L-XJ [7] I+1 [8] UI(Hy) [9] BBLOOP: NHE((H-SXXJ) t2)+MAE(A-LI[I]) t2 [10] DM+((H+SXXJ)*2)+HA [11] UI[I]++/-(LA+02x=0)xs(HH+DH)x0.5 [12] I+I+1 [13] +(I(N+1)/SBLOOP [14] UHL+(~100000xH)++/UI

[1] a THIS FUNCTION COMPUTES THE ELECTRIC POTENTIAL AT ANY POIRT, (L,H)

STATE	STATION	THUNDERSTOPM DAYS (ND+/YEAR)	GROUND PSTRIKE DENSITY (NG•/YF•/KM ²)
A∟ →∟ A∟	BIRMINGHAM HUNTSVILLE MOBILE MONTGOMERY	53,71 59,20 79,78 52,13	13.37 13.34 27.07 15.44
4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 	ANCHORAGE ANNETTE BARROW BARTER ISLAND BETHEL BETTLES BIG DELTA COLD BAY FAIRBANKS GULKANA HOMER JUNEAU KING SALMON KODIAK KOTZEBUE MC GRATH NOME ST PAUL ISLAND SHEYMA ISLAND SUMMIT TALKEETNA UNAKLEET YAKUTAT	$1 \cdot 12$ $1 \cdot 43$ $0 \cdot 07$ $0 \cdot 26$ $1 \cdot 39$ $4 \cdot 67$ $2 \cdot 53$ $0 \cdot 05$ $5 \cdot 12$ $4 \cdot 70$ $0 \cdot 38$ $0 \cdot 32$ $1 \cdot 31$ $0 \cdot 29$ $0 \cdot 59$ $0 \cdot 15$ $5 \cdot 00$ $4 \cdot 30$ $1 \cdot 59$	$\begin{array}{c} 0 & \cdot 39 \\ 0 & \cdot 50 \\ 0 & \cdot 58 \\ 0 & \cdot 51 \\ 0 & \cdot 51 \\ 0 & \cdot 51 \\ 0 & \cdot 41 \\ 0 & \cdot 04 \\ 0 & \cdot 33 \\ 0 & \cdot 76 \\ 0 & \cdot 15 \\ 0 & \cdot 76 \\ 0 & \cdot 15 \\ 0 & \cdot 248 \\ 0 & \cdot 09 \\ 0 & \cdot 248 \\ 0 & \cdot 09 \\ 0 & \cdot 248 \\ 0 & \cdot 09 \\ 0 & \cdot 248 \\ 0 & \cdot 09 \\ 0 & \cdot 248 \\ 0 & \cdot 09 \\ 0 & \cdot 05 \\ 0 & \cdot 10 \\ 0 & \cdot 05 \\ 0 & \cdot 10 \\ 0 & \cdot 05 \\ 0 & \cdot 10 \\ 0 & \cdot 05 \\ 0 & \cdot 10 \\ 0 & \cdot 05 \\ 0 & \cdot 10 \\ 0 & \cdot 05 \\$
A Z A Z A Z A Z A Z	FLAGSTAFF PHDENIX TUCSON WINSLOW YUMA	50° 53 23° 03 39° 84 36° 34 7° 26	13.37 4.60 13.29 9.33 1.43
AR AR	FORT SMITH LITTLE ROCK	57.05 56.97	11.84 11.51
AS	PAGO PAGO	26,07	3.73
	BAKERSFIELD BISHOP BLUE CANYON EUREKA FRESNO LONG BEACH LOS ANGLES (CITY) LOS ANGLES (LAX) MOUNT SHASTA GAKLAND RED BLUFF SACRAMENTO	2, 30 13, 24 11, 33 4, 55 5, 43 3, 71 6, 21 3, 51 13, 27 2, 28 9, 70 4, 76	0.95 2.21 1.97 1.23 1.37 1.10 1.43 1.10 1.43 1.10 0.37 1.52 1.52 1.27

.

C5

A

STATE	STATION	THUNDEPSTORM DAYS (NO./YEAR)	GPDUNDPSTRIKE DENSITY (NG+/YR+/KM ²)
C A C A C A C A C A C A	SANDBERG SAN DIEGJ SAN FRANCISCO (CITY) SAN FRANCISCO (SFO) STOCKTON SANTA MARIA	4.22 2.70 2.25 2.12 3.11 2.32	1 • 1 4 C • 76 C • 35 U • 55 1 • 01 C • 29
C0 C0 C0 C0	ALAMOSA COLGRADO SPRINGS Denver Grand Junction Pueblo	44,42 59.67 41.33 34,32 40,32	12.92 22.43 11.02 6.38 10.39
C T C T	BRIDGEPORT HARTFORD	21.57	3•50 3•62
DE	WILMINGTON	31.03	5.73
DC DC	WASHINGTON (DCA) Washington (Iad)	29007 27013	5•18 4•60
ドアアアアチャアアアレンシー	APALACHICOLA DAYTONA BEACH FORT MYERS JACKSONVILLE KEY WEST LAKELAND MIAMI ORLANDO (MC COY AFB) PENSACOLA TALLAHASSEE TAMPA WEST PALM BEACH	70,19 79,61 94,57 03,94 62,50 74,04 81,21 73,62 74,13 83,19 75,53	22.99 25.25 47.04 20.28 47.04 15.356 26.37 32.79 30.37 22.90 35.05 25.05 40.90 25.69
G G G G G G G G G G G G G G G G G G G	ATHÈNS ATLANTA AUGUSTA COLUMBUS MACON ROME SA'VANNAH	51.52 50.19 55.15 55.71 56.33 61.42 64.33	13.00 11.57 15.41 15.61 15.43 15.43 15.47 20.62
ទប	TAGUAC	27.)}	4.79
HI HI HI HI	HILG Honelulu Kahulu I Lihui	ರ • 75 7 • 07 4 • 95 8 • ∋1	1 • 5 7 1 • 4 3 1 • 2 0 1 • 5 4

. .

÷

ST ATE	STATION	THUNDERSTORM DAYS (NC:/YEAR)	GRIUNDHSTPIKE Density (NCB/YP,/KM ²)
ID ID ID	BDISE Lewiston Pocatellu	14,34 15,75 23,11	2034 2043 4052
[L [L] L] L] L] L] L] L	CARID CHICAGO (MIDWAY) CHICAGO (D'HARE) MJLINE PECRIA ROCKFOPD SPRINGFIELD	52.77 40.54 35.42 47.36 48.94 42.19 50.00	10.95 7.53 5.72 10.01 10.25 5.38 10.79
I N I N I N I N	EVANSVILLE Fort Wayne Indianapolis South Bend	45.73 41.00 44.69 42.39	3087 7337 3037 3037 3034
I A I A I A I A I A	BURLINGTON DES MOINES Dubuque Sioux city Materloo	50,58 49,73 44,93 45,33 41,70	11.05 11.22 9.29 10.49 3.51
K S K S S S S S	CONCORDIA DODGE CITY GOCULAND TOPEKA WICHITA	58.33 53.33 43.74 57.58 55.29	15 • 71 14 • 32 13 • 59 14 • 14 13 • 25
К Ү К Ү	LEXINGTON LOUISVILLE	+ó₃7ó 45,40	10-22 9-13
L A L A L A L A	ALEXANDRIA BATON ROUGE LAKE CHARLES NEW ORLEANS SHREVEPORT	58.07 70.46 75.88 58.73 54.15	16.95 20.07 22.5 9 20.33 10.21
ME ME	CARIBOU Portland	20.33 13.05	3•57 2•98
чD	BALTIMORE	23.44	3 .1 0
М А М А М А	BOSTIN Nantucket Worcester	19,33 20,27 21,27	3•14 3•09 3•51

STATE	STATI JN	THUNDERSTORM DAYS (NUSYYEAR)	GALUNDƏSTAIKE DENSITY (NG•/YR•/KM ^Z)
M I M I M I M I M I M I M I M I	ALPENA DETROIT (DTT) DETROIT (DTM) FLINT GRAND RAPIDS HOUGHTON LAKE LANSING MARQUETTE MUSKEGON SAULT STE MARIE	33.29 32,02 33.20 33.03 36.71 36.71 36.54 34.17 28.07 37.34 29.44	6.25 5.67 5.67 5.97 5.97 5.95 5.95 6.13 5.93 6.83 5.93 5.832
M N M N M N M N M N	CULUTH INTERNATIONAL FALLS MINNEAPOLIS ROCHESTER SAINT CLOUD	34•66 31•42 36•79 41•00 35•76	7.35 5.67 7.41 8.32 7.54
M S M S	JACKSON Meridan	65•79 58•59	15.30 13.31
м 0 м 0 м 0 л 0 л 0 м 0 м 0	COLUMBIA KANSAS CITY (MCI) KANSAS CITY (MKC) SAINT JOSEPH ST. LOUIS SPRINGFIELD	51,50 51,20 49,65 55,35 44,35 53,00	13.40 11.39 10.59 13.76 .8.61 13.00
МТ МТ МТ МТ МТ МТ МТ МТ	BILLINSS GLASGO# GREAT FALLS HAVRE HELENA KALISPELL MILES CITY MISSCULA	28,79 27,11 25,60 21,60 33,81 22,75 26,43 23,61	5.00 5.30 5.17 3.86 3.32 3.90 c.)2 4.36
22222222222 2222222222 22222222	GRAND ISLAND LINCGLN (APT) LINCCLN (CITY) NORFDLK NORTH PLATTE OMAHA (CITY) OMAHA (EPPLY FIELD) SCOTTSBLUFF VALENTINE	47.99 48.33 49.33 50.20 45.92 40.50 48.60 43.56 45.22	$ \begin{array}{c} 11 \cdot 76 \\ 10 \cdot 77 \\ 11 \cdot 99 \\ 13 \cdot 11 \\ 11 \cdot 95 \\ 3 \cdot 00 \\ 11 \cdot 26 \\ 11 \cdot 92 \\ 12 \cdot 75 \end{array} $
>>>> 2 7 7 7 7 7 7 7 7	ELKO ELY LAS VEGAS RENO WINNEMUCCA	20.72 32.00 14.97 13.54 14.30	3 • 4 7 c • 7 5 2 • 9 5 2 • 9 6 2 • 2 4

STATE	NCITATE	THUNDERSTORN Days (NU•/Year)	GPIUND=STPIKE DENSITY (NC;/YR;/KM ²)
NH	CONCORD	20,47	3 o 4 9
NH	MT WASHINGTON	10,33	2 o 7 4
С И	ATLANTIC CITY	25•47	4 9 36
С И	Newark	25•47	4 9 4 3
С И	Trenton	33•22	0 9 5 3
NM	ALBUQUERQUE	42.34	11.18
NM	Clayton	54.11	17.33
NM	Roswell	32.00	6.30
Y Y Y Y Y N N Y Y Y Y N N N N N N	ALBANY BINGHAMTON BUFFALO NEW YORK (CITY) NEW YORK (JFK) NEW YORK (LA GUARDIA) ROCHESTER SYRACUSE	27:64 31:42 30:74 19:47 22:32 24:24 29:24 29:24 29:39	5 • 20 5 • 94 5 • 1 8 3 • 16 3 • 56 4 • 31 5 • 21 5 • 4 3
	ASHEVILLE	49.00	12.16
	CAPE HATTERAS	44.75).23
	CHARLOTTE	41.39).35
	GREENSBORD	46.57	11.50
	RALEIGH	45.67	10.67
	WILMINGTON	40.12	10.92
ND	FARGO	32.33	0 • 98
ND	BISMARK	33.58	7 • 99
ND	WILLISTON	26.77	5 • 65
00000000000000000000000000000000000000	AKRON	40.41	3・13
	CINCINNATI (ABSE OBS)	50.41	11・52
	CINCINNATI (APT)	44.23	シ・15
	CLEVELAND	35.42	シ・65
	CJLUMBUS	42.45	オ・93
	DAYTON	40.32	7・35
	TOLEOO	40.30	3・11
	MANSFIELO	39.78	7・73
	YOUNG STOWN	35.85	ロ・53
OK	CKLAHDMA CITY	50•68	10084
OK	Tulsa	52•25	11021
OR	ASTORIA	7.67	1 • 5 2
OR	BURNS	13,35	2 • 0 2
OR	EUGENE	4,30	1 • 2 5
OR	MEACHAM	15,70	2 • 3 7
OR	MEDFORD	8,52	1 • 5 5

100 ×

CT \T=	2747400		COCIND SET OF
STATE	STATION	DAYS (NCJ/YEAR)	DENSITY (NC /YF /KAZ)
OR	PENDLETON	9.90	1 • 54
OR	Portland	5.36	1 • 4 ±
OR	Salem	5.50	1 • 3 ±
OR	Sexton Summit	5.70	1 • 2 0
РА РА РА РА РА РА	ALLENTOWN AVOCA ERIE HARRISBURG PHILADELPHIA PITTSBURG WILLIAMSPORT	32,82 31,05 33,36 32,79 26,81 36,28 34,29	6.31 5.26 5.91 6.34 4.00 6.33 7.11
PR	SAN JUAN	39,73	7.92
RI	BLOCK ISLAND	16.79	2 • ċð
RI	Providence	20.42	3 • 27
SC	CHARLESTON	56+46	16.69
SC	COLUMBIA	54+27	14.73
SC	GREER	43+37	9.54
S D	ABERDEEN	35.03	3•13
S D	Hurðn	40,34	9•53
S D	Rapid City	42,42	12•17
S D	Siðux Falls	43.69	10•23
T N N N N N N N N N N N N N N N N N N N	BRISTOL	45.50	10.55
	Chattanooga	56.11	13.95
	Knoxville	47.83	10.36
	Memphis	52.93	10.28
	Nashville	53.42	12.42
	Cak Ridge	52.81	12.71
TTTTTTTTTTTTTTTTT XXXXXXXXXXXXXXXXXXXX	ABILENE AMARILLO AUSTIN BROWNSVILLE CORPUS CHRISTI DALLASDET WORTH (DEW) DALLAS (LOVE FIELD) DEL RIO EL PASO HOUSTON LUBBOCK MIDLANDDODESSA PORT ARTHUR SAN ANGELO SAN ANTONIO VICTORIA	41.73 42.01 40.81 24.34 30.76 45.12 45.12 45.13 35.89 67.50 45.32 36.45 64.17 36.60 36.00 45.13	$7 \cdot 65$ $12 \cdot 28$ $6 \cdot 71$ $3 \cdot 72$ $4 \cdot 69$ $8 \cdot 04$ $5 \cdot 62$ $6 \cdot 39$ $8 \cdot 99$ $17 \cdot 92$ $10 \cdot 12$ $6 \cdot 73$ $16 \cdot 71$ $6 \cdot 32$ $5 \cdot 74$ $9 \cdot 91$

-

ST ATE	STATION	THUNDERSTORM Days (NO,/YEAR)	GROUNDƏSTRIKE DENSITY (ND•/YR•/KM ²)
тх	WACC	45,44	7.82
тх	Wichita Falls	48,65	9.30
TT	JOHNSTON ISLAND	4,07	1 • 17
TT	KORJA ISLAND	36,05	5 • 4 ¢
TT	KWAJALEIN ISLAND	9,76	1 • 78
TT	MAJURO ATOLL	16,52	2 • 5 §
TT	PONAPE ISLAND	28,04	3 • 97
TT	TRUK ATOLL	19,42	2 • 6 2
TT	WAKE ISLAND	6,93	1 • 3 ¢
TT	YAP ISLAND	16,03	2 • 4 §
UT	MILFORD	32.00	7 • 33
UT	SALT LAKE CITY	35.29	6 • 84
UT	WENDIVER	29.00	5 • 77
v۲	BURLINGTON	24,94	4 • o 3
V A	LYNCHBURG	40.50	9•13
V A	NDRFOLK	37.07	7•49
V A	RICHMOND	36.75	7•63
V A	ROANOKE	37.80	8•13
W A W A W A W A W A W A	OLYMPIA SEATTLE (APT) SEATTLE (CITY) SPOKANE STAMPEDE PASS WALLA WALLA YAKIMA	4,65 7,27 5,06 1,0,50 7,29 1,1,25 6,90	1 • 24 1 • 60 1 • 45 1 • 74 1 • 29 1 • 51 1 • 25
W V W V W V W V	BECKLEY CHARLESTON ELKINS HUNTINGTON PARKERSBURG	45,71 43.37 44.73 44.33 44.33 44.00	10.97 9.42 10.33 9.57 9.91
W I	GREEN BAY	34.79	6 • 49
W I	La crosse	4J.15	5 • 29
W I	Madisjn	40.62	7 • 96
W I	Milwaukee	35.31	c • 45
# Y # Y # Y	CASPER CHEYENNE LANDER SHERIDAN	34 • 26 49 • 36 31 • 71 35 • 59	7.35 15.41 7.05 9.03

- -

	TECH	NICAL REPORT STANDARD TITLE PA
1. REPORT NO.	2. GOVERNMENT ACCESSION NO.	3. RECIPIENT'S CATALOG NO.
NASA CK-3345	<u> </u>	
4. TITLE AND SUBTITLE		5. REPORT DATE
Electrostatic Protection of the	e Solar Power Satellite and	6 PERFORMING ORGANIZATION CODE
Rectenna – Part II: Lightning	Protection of the Rectenna	
7 AUTHOR(S)		8. PERFORMING ORGANIZATION REPOR
,		
9. PERFORMING ORGANIZATION NAME AND	ADDRESS	10. WORK UNIT, NO.
Dico University		M-309
Hausten Bass a 77004		11. CONTRACT OR GRANT NO.
Houston, Texas 77001		NAS8-33023
		13. TYPE OF REPORT & PERIOD COVER
2. SPONSORING AGENCY NAME AND ADDRE	\$\$	
		Contractor Report
National Aeronautics and Space	ce Administration	
Washington, DC 20546		14. SPONSORING AGENCY CODE
		L
15. SUPPLEMENTARY NOTES		
NASA Marshall Technical Mo	nitor: Charles Guttman	
Final Report		
ABSTRACT		······································
Computer simulatic	ons and laboratory tests were	used to evaluate the
Computer simulatic hazard posed by lightni recommendations on a li distribution of lightni was determined, as were the modes in which thos showed that lightning pr two systems of lightning pr two systems that employ top of the rectenna's b buted system is similar sists of short lightning connected by a horizont affords greater protect integration into the re ning protection system.	ons and laboratory tests were ng flashes to ground on the ghtning protection system fo ng over the lower 48 of the the interactions of lightni e interactions could damage rotection was both required otection were considered and ed lightning rods of different illboards and a third, distr to one used by power distril g rods all along the length al wire above the billboard. ion than the others considered ctenna's structural design, w	used to evaluate the SPS rectenna and to make r the rectenna. The continental United States ng with the rectenna and the rectenna. The studies and feasible. Several evaluated. These included nt lengths and placed on ibuted system. The distri- bution companies; it con- of each billboard that are The system that not only ed but offers easiest was the distributed light-
Computer simulatic hazard posed by lightni recommendations on a li distribution of lightni was determined, as were the modes in which thos showed that lightning pr two systems of lightning pr two systems that employ top of the rectenna's b buted system is similar sists of short lightning connected by a horizont affords greater protect integration into the re ning protection system.	ons and laboratory tests were ng flashes to ground on the ghtning protection system fo ng over the lower 48 of the the interactions of lightni e interactions could damage rotection was both required otection were considered and ed lightning rods of differe illboards and a third, distr to one used by power distril g rods all along the length al wire above the billboard. ion than the others considered ctenna's structural design, n	used to evaluate the SPS rectenna and to make r the rectenna. The continental United States ng with the rectenna and the rectenna. The studies and feasible. Several evaluated. These included nt lengths and placed on ibuted system. The distri- bution companies; it con- of each billboard that are The system that not only ed but offers easiest was the distributed light-
Computer simulatic hazard posed by lightni recommendations on a li distribution of lightni was determined, as were the modes in which thos showed that lightning pr systems of lightning pr two systems that employ top of the rectenna's b buted system is similar sists of short lightning connected by a horizont affords greater protect integration into the re ning protection system.	ons and laboratory tests were ng flashes to ground on the ghtning protection system fo ng over the lower 48 of the the interactions of lightni e interactions could damage rotection was both required otection were considered and ed lightning rods of different illboards and a third, distr to one used by power distril g rods all along the length al wire above the billboard. ion than the others considered ctenna's structural design, n	used to evaluate the SPS rectenna and to make r the rectenna. The continental United States ng with the rectenna and the rectenna. The studies and feasible. Several evaluated. These included nt lengths and placed on ibuted system. The distri- bution companies; it con- of each billboard that are The system that not only ed but offers easiest was the distributed light-
Computer simulatic hazard posed by lightni recommendations on a li distribution of lightni was determined, as were the modes in which thos showed that lightning pri two systems of lightning pri two systems that employ top of the rectenna's b buted system is similar sists of short lightning connected by a horizont affords greater protect: integration into the re ning protection system.	ons and laboratory tests were ng flashes to ground on the ghtning protection system fo ng over the lower 48 of the the interactions of lightni e interactions could damage rotection was both required otection were considered and ed lightning rods of different illboards and a third, distr to one used by power distril g rods all along the length al wire above the billboard. ion than the others considered ctenna's structural design, n 18. DISTRIBUTION Unclassif	used to evaluate the SPS rectenna and to make r the rectenna. The continental United States ng with the rectenna and the rectenna. The studies and feasible. Several evaluated. These included nt lengths and placed on ibuted system. The distri- bution companies; it con- of each billboard that are The system that not only ed but offers easiest was the distributed light- N STATEMENT Fied - Unlimited
Computer simulatic hazard posed by lightni recommendations on a li distribution of lightni was determined, as were the modes in which thos showed that lightning pri two systems of lightning pri two systems that employ top of the rectenna's b buted system is similar sists of short lightnin connected by a horizont affords greater protect integration into the re ning protection system.	ons and laboratory tests were ng flashes to ground on the ghtning protection system fo ng over the lower 48 of the the interactions of lightni e interactions could damage rotection was both required otection were considered and ed lightning rods of different illboards and a third, distr to one used by power distril g rods all along the length al wire above the billboard. ion than the others considered ctenna's structural design, n 18. DISTRIBUTION Unclassif	used to evaluate the SPS rectenna and to make r the rectenna. The continental United States ng with the rectenna and the rectenna. The studies and feasible. Several evaluated. These included nt lengths and placed on ibuted system. The distri- bution companies; it con- of each billboard that are The system that not only ed but offers easiest was the distributed light- N STATEMENT Eied - Unlimited
Computer simulatic hazard posed by lightni recommendations on a li distribution of lightni was determined, as were the modes in which thos showed that lightning pr two systems of lightning pr two systems that employ top of the rectenna's b buted system is similar sists of short lightnin connected by a horizont affords greater protect integration into the re ning protection system.	ons and laboratory tests were ng flashes to ground on the ghtning protection system fo ng over the lower 48 of the the interactions of lightni e interactions could damage rotection was both required otection were considered and ed lightning rods of different illboards and a third, distr to one used by power distril g rods all along the length of al wire above the billboard. ion than the others considered ctenna's structural design, n 18. DISTRIBUTION Unclassif	used to evaluate the SPS rectenna and to make r the rectenna. The continental United States ng with the rectenna and the rectenna. The studies and feasible. Several evaluated. These included nt lengths and placed on ibuted system. The distri- bution companies; it con- of each billboard that are The system that not only ed but offers easiest was the distributed light- N STATEMENT Fied - Unlimited
Computer simulatic hazard posed by lightni recommendations on a li distribution of lightni was determined, as were the modes in which thos showed that lightning pr two systems of lightning pr two systems that employ top of the rectenna's b buted system is similar sists of short lightnin connected by a horizont affords greater protect integration into the re ning protection system.	ons and laboratory tests were ng flashes to ground on the ghtning protection system fo ng over the lower 48 of the the interactions of lightni e interactions could damage rotection was both required otection were considered and ed lightning rods of different illboards and a third, distr to one used by power distril g rods all along the length of al wire above the billboard. ion than the others considered ctenna's structural design, of Unclassif	used to evaluate the SPS rectenna and to make r the rectenna. The continental United States ng with the rectenna and the rectenna. The studies and feasible. Several evaluated. These included nt lengths and placed on ibuted system. The distri- bution companies; it con- of each billboard that are The system that not only ed but offers easiest was the distributed light- N STATEMENT Fied - Unlimited
Computer simulatic hazard posed by lightni recommendations on a li distribution of lightni was determined, as were the modes in which thos showed that lightning pri two systems of lightning pri two systems that employ top of the rectenna's b buted system is similar sists of short lightning connected by a horizont affords greater protect integration into the re ning protection system.	ons and laboratory tests were ng flashes to ground on the ghtning protection system fo ng over the lower 48 of the the interactions of lightni e interactions could damage rotection was both required otection were considered and ed lightning rods of different illboards and a third, distri- to one used by power distril g rods all along the length of al wire above the billboard. ion than the others considered ctenna's structural design, m 18. DISTRIBUTION Unclassif	used to evaluate the SPS rectenna and to make r the rectenna. The continental United States ng with the rectenna and the rectenna. The studies and feasible. Several evaluated. These included nt lengths and placed on ibuted system. The distri- bution companies; it con- of each billboard that are The system that not only ed but offers easiest was the distributed light- N STATEMENT Fied - Unlimited
Computer simulatic hazard posed by lightni recommendations on a li distribution of lightni was determined, as were the modes in which thos showed that lightning pri two systems of lightning pri two systems that employ top of the rectenna's b buted system is similar sists of short lightning connected by a horizont affords greater protect integration into the re ning protection system.	ns and laboratory tests were ng flashes to ground on the ghtning protection system fo ng over the lower 48 of the the interactions of lightni e interactions could damage rotection was both required otection were considered and ed lightning rods of different illboards and a third, distri- to one used by power distril g rods all along the length of al wire above the billboard. ion than the others considered ctenna's structural design, no 18. DISTRIBUTION Unclassif	used to evaluate the SPS rectenna and to make r the rectenna. The continental United States ng with the rectenna and the rectenna. The studies and feasible. Several evaluated. These included nt lengths and placed on ibuted system. The distri- bution companies; it con- of each billboard that are The system that not only ed but offers easiest was the distributed light- N STATEMENT Fied - Unlimited
Computer simulatic hazard posed by lightni recommendations on a li distribution of lightni was determined, as were the modes in which thos showed that lightning pri two systems of lightning pri two systems that employ top of the rectenna's b buted system is similar sists of short lightning connected by a horizont affords greater protect integration into the re ning protection system.	ns and laboratory tests were ng flashes to ground on the ghtning protection system fo ng over the lower 48 of the the interactions of lightni e interactions could damage rotection was both required otection were considered and ed lightning rods of different illboards and a third, distri- to one used by power distril g rods all along the length of al wire above the billboard. ion than the others considered ctenna's structural design, no unclassif	used to evaluate the SPS rectenna and to make r the rectenna. The continental United States ng with the rectenna and the rectenna. The studies and feasible. Several evaluated. These included nt lengths and placed on ibuted system. The distri- bution companies; it con- of each billboard that are The system that not only ed but offers easiest was the distributed light- N STATEMENT Fied - Unlimited Subject Category 44
Computer simulatic hazard posed by lightni recommendations on a li distribution of lightni was determined, as were the modes in which thos showed that lightning pr two systems of lightning pr two systems that employ top of the rectenna's b buted system is similar sists of short lightning connected by a horizont affords greater protect integration into the re ning protection system. 7. KEY WORDS Solar Power Satellite Lightning Protection 9. SECURITY CLASSIF. (of the report)	20. SECURITY CLASSIF. (of this page)	Used to evaluate the SPS rectenna and to make r the rectenna. The continental United States ng with the rectenna and the rectenna. The studies and feasible. Several evaluated. These included nt lengths and placed on ibuted system. The distri- bution companies; it con- of each billboard that are The system that not only ed but offers easiest was the distributed light- N STATEMENT Fied - Unlimited Subject Category 44 21. NO. OF PAGES 22. PRICE

MSFC - Form 3292 (Rev. December 1972)

For sale by National Technical Information Service, Springfield, Virginia 22161

İ.