LOAA COPY: RETURN TO

Satellite Power Systems (SPS) Concept Definition Study

Volume II, Part 2 - System Engineering

Satellite Power Systems (SPS) Concept Definition Study

Volume II, Part 2 - System Engineering

G. M. Hanley
Rockwell International
Downey, California

Prepared for
Marshall Space Flight Center
under Contract NAS8-32475

N/S^

National Aeronautics
and Space Administration

Scientific and Technical Information Branch

FOREWORD

Volume II, System Engineering, is presented in two parts. Part 1 encompasses SPS system engineering aspects. Part 2 consists of a volume on SPS cost and programmatics; an appendix is included in Part 2 to cover the SPS WBS and cost estimates. Volume II of the SPS Concept Definition Study final report is submitted by Rockwell International through the Satellite Systems Division. All work was completed in response to NASA/MSFC Contract NAS8-32475, Exhibit C, dated March 28, 1978.

The SPS final report will provide the NASA with additional information on the selection of a viable SPS concept, and will furnish a basis for subsequent technology advancement and verification activities. Other volumes of the final report are listed as follows:

Volume	Title
I	Executive Summary
III	Experimentation/Verification Element Definition
IV	Transportation Analyses
V	Special-Emphasis Studies
VI	In-Depth Element Investigations
VII	Systems/Subsystems Requirements Data Book

The SPS. Program Manager, G. M. Hanley, may be contacted on any of the technical or management aspects of this report. He can be reached at 213/594-3911, Seal Beach, California.

ACKNOWLEDGEMENTS

Since the publication of earlier Rockwell SPS cost, economic, and programmatic documentation-dating back to 1976-a continuing effort has been maintained to incorporate the latest program developments, expand the Rockwell SPS cost model; conduct comparative cost/economic analyses; prepare integrated schedules or networks; and define SPS program plans and resource requirements. The results of this work represent a professional contribution on the part of many individuals, where most of them have been with the SPS contract activity and supplementing company-sponsored efforts since the start of our effort. It is this contribution that requires acknowledgement.

The overall study activity was also supported by other business/industrial organizations and technical members of the SPS program team and their management, making it possible to reach the desired conclusions with the minimum of effort.

The Rockwell SPS program development team that contributed to the search, analyses, and results of this study are:

- Dr. L. R. Blue Cost/Risk Programming
- W. Cooper Cost Analysis
- D. E. Lundin SPS Schedules/Networks
- A. D. Kazanowski Resource Analysis

The overall SPS program development activity on SPS costs, schedules, program planning, resource analysis, and computer programing was completed under the direction of F. W. Von Flue.

The help and support of personnel from NASA/MSFC and the SPS Program Planning Office is also acknowledged.

- Engineering Cost Group
- W. S. Rutledge
- J. W. Hamaker
- D. T. Taylor
- Program Plans and Requirements Group
- W. A. Ferguson
- H. K. Turner

TABLES

Table Page
1.3-1 Industry Contacts 1-7
2.3-1 SPS Program Development Cost 2-4
2.3-2 SPS Program Average Cost 2-5
2.3-3 Potential Cost Drivers, Rockwell SPS Ref. Configuration 2-9
2.3-4 DDT\&E Plus TFU Cost by Year 2-10
2.4-1 Rectenna Concrete Requirements/Panel 2-15
3.1-1 SPS Program Plans 3-1
3.2-1 SPS Program Plans/DDT\&E Relationship Matrix . . . 3-3
4.1-1 Business/Industry and Literature Sources . . . 4-2

1.0 SPS COST AND PROGRAMMATICS

1.1 INTRODUCTION

Abstract

U.S. energy demands continue to increase dramatically and the availability of traditional energy resources have become the focal point of national/international concern and economic balance. It is therefore important that alternate sources of energy be identified and evaluated as potential solutions to the law of supply and demand. In this regard, the possibility of generating large quantities of electrical power in space and transmitting it to earth offers a conceivable solution. However, economic and technological requirements of such a program needs to be established with confidence. This volume considers the cost and programmatic requirements for a recommended satellite power system reference concept evolving from a series of contracts ${ }^{1}$ and company-sponsored work completed by the Rockwell International Satellite Systems Division of the Space Systems Group.

The Rockwell SPS reference satellite and rectenna concept are illustrated in Figure 1.1-1. These configurations were used in the definition of costs and programmatics described in this volume. Typically, a single SPS provides 5 GW of electric power to the utility interface on the ground. The satellite is located in geosynchronous orbit and converts solar energy to dc electrical energy using large GaAlAs solar arrays at a concentration ratio of two suns. The dc electrical energy is conducted from the solar arrays to the microwave antenna where the energy is transformed to microwave RF energy. A large, $1-k m-d i a m e t e r$, antenna beams the energy to a receiving antenna (rectenna) on the ground. The rectenna converts the RF energy, at very high efficiency, to dc electrical energy where it is collected and routed to conversion centers for subsequent input to the utility grid.

The overall scenario for SPS space transportation involvement is shown in Figure 1.1-2. Eight major elements comprise the transportation system:

- Shuttle
- SPS heavy-lift launch vehicle (HLLV)
- Electrical orbit transver vehicle (EOTV)
- Intraorbit transfer vehicle (IOTV)
- Personnel orbit transfer vehicle (POTV)
- Crew module (CM)
- Leo propellant depot
- GEO propellant depot

The SPS HLLV is used to bring construction payload, crew expendables, and propellants for the EOTV and POTV. The IOTV is used to carry payloads over short

[^0]

Figure 1.1-1. SPS Reference Satellite and Rectenna Concept

Figure 1.l-3. Overall Satellite Construction Scenario

This volume is divided into three sections that describe the program, study approach, and ground rules/guidelines (Section 1.0). Section 2.0 covers cost analysis definitions and summarizes SPS costs for each of the main elements-satellite, space construction and support, transportation/facilities, ground receiving station, and management/integration. Comparative assessments are presented along with a description of cost trades. SPS programmatic elements are presented in Section 3.0 to provide detail schedule/network information on the flow and sequence of design, development, construction, and operational activity. Included are some 13 program plans identifying operational requirements and considerations of the SPS program.

1.2 SPS GROUND RULES AND GUIDELINES

A series of ground rules and guidelines were used during the study to provide a common reference point for the uniform development of cost and programatic elements of the SPS program. These considerations are itemized as follows.

1. The SPS WBS of Appendix A was used as the structure of program hardware, activities, and accounts.
2. Key dates of program planning:

- 1980-1985 Ground-Based Exploratory Research Activities
- 1981-1987 Key Technology Program Activities
- 1990 Decision Point for SPS Commercialization (Phase C/D)
- 2000 IOC of First SPS

3. Costs are reported at WBS level in terms of:
(a) Development cost and TFU (theoretical first unit)
(b) Initial capital investment average cost per satellite (Satellites TFU and No. 2 through No. 60)
(c) Replacement capital investment (RCI) cost and operations and maintenance ($O \& M$) cost per satellite per year
4. Cost estimates are projected in 1977 dollars and maximum use was made of past SPS studies and other associated data as appropriate.
5. SPS build rate will be two nominal 5 -GW SPS systems per year for 30 years to provide a total capacity of 300 GW by 2030.
6. Overall SPS lifetime will be 30 years with minimum maintenance and no salvage value or disposition costs.
7. Complete construction and assembly will occur at geosynchronous orbit.
8. Calculations are based on 0% launch losses.
9. Program management and SE\&I (management and integration) are costed at 5% of all other Level 2 costs.
10. 25% mass contingency is costed as a 15% cost contingency on SPS WBS items of the satellite (1.1), space construction and support (1.2), and transportation (1.3).

In order to promote a complete and understandable comparison of SPS concepts, and to maintain compatible economic and programmatic references, the SPS Work Breakdown Structure (WBS) Dictionary ${ }^{1}$ was used as the baseline document for the definition and organization of program elements. This structure subdivided the program into lower-level elements within each major system grouping and associated the dictionary definition with special accounts and phases unique to the program. Accounts and phases were designated for the DDT\&E; initial capital investment (covering initial procurement and placement of each SPS); replacement capital investment (capital asset replacement over the SPS operating life); and operations/maintenance (expendables and minor maintenance). This structural interface (Figure 1.2-1) provides the capability to view and analyze the SPS program from a number of programmatic, economic/cost, and management aspects. The WBS dictionary (Appendix A) was carefully maintained and updated throughout the study as the programmatic baseline.

[^1]

1.3 STUDY TEAM AND INTERFACES

The SPS program development group functioned as an integral part of the overall SPS studv team and participated in the progress and results of each task as it evolved. In addition to the daily interface with members of the Rockwell staff, discussions were held with representatives of the NASA/DOE. Supporting business/industrial representatives, such as those listed in Table 1.3-1, were contacted during the analysis and grass roots development of cost and programmatic estimates.

Table 1.3-1. Industry Contacts

qrganization	PUPPOSE.
- SmE (SOC IETY OF mANUFACTURING) ENG INEERS)	obtain technical data on roboticals AND TECHNOLOGY STATUS
- riverside cement co.	rectenna cementiconcrete requirements and Processes
- MODERN ALLOYS, INC.	METHODS E EQUIPMENT FOR CONTINUOUS placement of rectenna panel concrete FOOTINGS
- sandia-solar thermal	COMPARISON OF STTF CONSTRUCTIONIHANDLING APPROACH WITH SPS RECTENNA REQ'TS
- TOWNSEND \& BOTTUM, CONST. MGRS. 10 MW SOLAR PLANT IN BARSTOW, CA	Site preparation and construction operations
- AMERICAN brIdGE - A dIVISION OF UNITED STATES STEEL	STEEL REQ'TS \& CONSTRUCTION APPROACH FOR INSTALLATION OF RECTENNA PANELS
- ALPha-beta distribution center	ANALYSIS OF MATERIALS HANDLING SYSTEMS
- catapillar	EARTH MOVING \& GRADING EQUIPMENT
- international harvester	EARTH MOVING \& GRADING EQUIPMENT
- SOUTHERN Callfornia edison	DC/AC POWER DISTRIBUTION LINESTOWERS

1.4 STUDY APPROACH

The objective of the study was to provide NASA with additional, accurate, and sufficient data and information to enable the selection of preferred viable SPS concepts by CY 1980 as a basis for subsequent technology advancement and verification activities in the CY 1980-1987 time frame. In this regard, the cost and programmatics contribution is documented in this final report. The results of each task evolved from two major activities: (1) a review and update of contract Exhibits A and B costs as reported in April 1978; and (2) the extensive analysis, selection, and determination of cost estimates, along with program plans/schedules applicable to the newly selected Rockwell SPS reference configuration of Exhibit C-especially the expansion of transportation and ground-receiving station data bases. All results of this work were consistent with SPS ground rules/guidelines and contract requirements covering four areas as detailed in the study plan:

- Cost Analysis - Planning Packages
- Schedules/Networks - Program Plans

Figure 1.4-1 identifies the close interrelationship of these tasks, the source of data, and the flow of cost and programmatic information into applicable final report volume such as this Part 2 of Volume II-Systems Engineering that sumnarizes the activity in all areas.

Figure 1.4-1. Cost and Programmatic Approach

2.0 COST ANALYSIS

2.1 INTRODUCTION

Results of SPS cost analyses, trades, and sensitivities are described in this section. Cost estimates of the Rockwell SPS baseline concept were updated in June of 1978 , and shortly thereafter the reference NASA SPS concept replaced the earlier configuration. It is the reference configuration, with some design improvement, that was used in the development of cost and programmatics. The following discussion covers the costing approach/methodoloy; cost-effectiveness results; and SPS cost estimates, including time-phased costs of DDT\&E and TFU.

2.2 SPS COSTING APPROACH

The SPS cost analysis has been performed on the Rockwell reference configuration discussed in this report. The Exhibit C study considered an SPS option of 60 units with an IOC in the year 2000 and the full 300-GW capability to become operational at the rate of two SPS's or 10 GW per year. The Rockwell cost model was structured to the NASA SPS Work Breakdown Structure and Dictionary of November 1978, utilized the MSFC CER data base, and incorporated grass roots analyses and information from the Rockwell CER data base. This continuous interaction to seek and establish better cost estimates has resulted in a higher degree of confidence in the resultant cost estimates, as compared with those of the Exhibit A / B final report. While the cost estimating relationships were developed to be as accurate as possible, it is too early in the definition process of the SPS to precisely predict either the final system point design or point estimate. However, it is believed that another step has been taken to predict the direction and relative magnitude of cost impacts and to aid in design determination/decisions of preferred concepts.

There are basically four types of cost equations in the model, corresponding to the four WBS accounts-DDT\&E, initial capital investment, replacement capital investment, and operations and maintenance. The cost methodology is shown in detail in Appendix B as it covers CD (DDT\&E), CTFU and CIPS (initial capital investment); CRCI (replacement capital investment); and CO\&M (operations and maintenance). Appendix B also provides a brief narrative description of each CER, its application, input data, and the calculated value for each type of costs.

The DDT\&E equation (CD) estimates the cost of design, development test/ evaluation and non-recurring costs. Separate factors were utilized to calculate the proportional assessment for management and integration and as a cost contingency for mass growth. In view of the gross nature of the level of information currently available on WBS 1.1.7-System Test (hardware/operations) and Ground Support Equipment-the cost of systems test was assumed at 100% of the satellite system ICI cost; whereas GSE was factored at 10% of the satellite DDT\&E cost through 1.1.7.

The applicable total system mass, area, or power was used as the inputs for DDT\&E CER's. A development factor (DF) is included in the equation to adjust the cost to reflect only that portion of the total system mass, area, or power considered to be necessary for development of the complete system where it is not required to develop the total mass, area, or power. The CD cost equation also allows for the application of a complexity factor (CF) to adjust the cost results when it is determined that the item being estimated is either more or less complex than the CER base data.

The initial capital investment (ICI) cost equations estimate the initial capital investment cost of hardware items as a function of their mass, area, or power. The ICI cost equation is expressed in several different formsCLRM, CTFU, CTB, and CIPS. The CLRM (cost of lowest repeating module) equation requires that the point estimate correspond to the mass, area, or power of the lowest repeating module (M). This is necessary because of the physical scale of the SPS and the production quantities required for many of the hardware elements. It is not reasonable to estimate the SPS initial capital investment cost as a historical function of the entire•SPS mass, area, or power. Rather, it is desirable to cost the number of repeating modules required per satellite to establish the satellite theoretical first-unit cost (TFU), and then input the satellite TFU cost into a progress (learning) function for the quantity of satellites required to calculate the average unit cost (IPS). This calculation involves two steps in the cost equations. The first step (CLRM) is simply the portion of the equation which estimates the theoretical first repeating module cost as discussed above. The second step (CTFU) has the progress function incorporated into the equation for the quantity of repeat modules required per satellite. This is automatically taken into account with the progress over production quantities as required when calculating the cost to build (CTB). CTB calculations are then factored on the basis of a requirement to construct an SPS divided by the option quantity.

At the current level of SPS definition, it was difficult to define a repeating module. It is often impossible to know with any certainty just what portion of the total mass is appropriate to run through the equation as a module. It is just as difficult to identify how many distinct types or designs of modules will be required for any subsystem or assembly. In such cases, the study simply assumed a module mass (or area or power) based on an engineering best judgment.

Replacement capital investment (CRCI) CER's provide for the multiplication of the annual spares fraction (R) of each system by that system's cost to arrive at an RCI cost per satellite per year.

Operations and maintenance costs (CO\&M) are estimated in terms of O\&M cost per satellite per year. $O \& M$ costs include those expenditures incurred in day-today operations, beginning with SPS initial operating capability (IOC) and continuing over the life of each satellite. They consist of wages of O\&M personnel, minor repairs and adjustments to systems to maintain an ordinarily efficient operating condition, expendables and consumables, launch costs for delivery and transfer of on-orbit personnel, and cargo resupply of expendables and consumables, etc. $O \& M$ costs are calculated by the use of a direct cost input or by an annual factor per SPS times the cost to build the particular system.

The cost methodology seeks to account for five separate effects which influence SPS cost: scaling, specification requirements, complexity, the degree of automation, and production progress. Scaling refers to the relationship in cost between items varying in size, but similar in type. Economies of scale usually ensure that such a relationship will not be strictly linear, but rather as size increases the cost per unit of size will decrease. The scope of this relationship is reflected by the equation exponent which results from the regression analysis of the data used to develop the cost estimating relationship.

Specification requirements have been accounted for by normalizing the CER data base to manned spacecraft specification levels, using factors from the RCA price model. ${ }^{1}$ From that model, an average cost factor to adjust MIL-SPEC to manned spacecraft is around 1.75 for DDT\&E and 1.6 for production cost. Under the assumption that some relaxation of Apollo-type specifications can be made for the SPS, a factor of 1.5 was assumed for both DDT\&E and production cost. Furthermore, it was assumed that a factor of 3.0 would adjust commercial specifications to SPS requirements; therefore, military or commercial cost data used in the CER's were adjusted upward by factors of 1.5 and 3.0 , respectively.

The cost equations allow a complexity factor input to adjust the cost result when it is determined that the item being estimated is either more or less complex than the listed CER data base.

The degree of automation is accounted for in certain cost equations through an adjustment to the CER coefficient by the tooling factors given in Appendix B. The effect of tooling is dependent upon the annual production rate. Higher production rates allow harder tooling and, thus, effect cost reductions. The tooling factors are used only on those CER's which are based on historical aerospace programs with limited annual production rates. Tooling factors are not used (and thus are not exercised as part of the equations in Appendix B tables) on those CER's which are based on data already reflecting automated production techniques (e.g., the commercial electronics data for the microwave antenna CER).

Finally, the decreasing cost effects of progress, due to production process improvements or direct labor learning, are accounted for through standard progress functions. Many SPS components will be mass-produced in a capital intensive manner and will experience little labor learning. Other SPS hardware items, however, will be produced at very low annual rates much in the labor intensive manner of historical spacecraft programs and would therefore experience learning. (Technically distinguishable from learning-but still predictable with the same form of exponential function-are the effects of production process improvements. In this model, when progress functions are used, they are meant to account for both of these effects.) A constant relationship has been assumed between the progress fraction and the annual production rate.

[^2]As required by the costing ground rules and assumptions, all CER's are in terms of 1977 dollars. The study did assume 1990 technology and 1990 supply/ demand conditions which, in some cases, resulted in differential (non-general) price inflation or deflation between 1977 and 1990 being included in the CER's. Specifically, it was assumed that composite raw material prices and some electronic component prices will decrease relative to general prices, while aluminum coil stock prices will increase relative to general prices. Such effects are allowed for by the CER's but only to the extent that the expected price changes differ from expected general price changes. The CER's affected are those for the antenna structure, power source structure, and microwave antenna.

2.3 SPS COST ESTIMATES

Total program costs were developed for WBS sub-level elements of DDT\&E, production, launch, orbital assembly/construction, ground operations, replacement capital, and operations/maintenance. This section will present summarized cost data and describe the elements contained in each program phase.

Tables 2.3-1 and 2.3-2 summarize cost information for each main segment and phase of the SPS program. Table 2.3-1 shows development cost data through the first full 5-GW operational satellite (TFU) including space transportation, construction, operations, and the ground receiving station plus grid interface and facilities needed to establish the SPS operational capability of the ground and space segments. As such, all cost estimates for the TFU include systems, equipment, facilities, and machinery that have a service life capable of

Table 2.3-1. SPS Program Development Cost

WBS	DESCRIPTION	DOTEE	ELUPMENT TFU	TOTAL
1	SAIELLIE PUNER STSTEM (SPS) PROGRAM	$35-81.702$	51103.242	84505.000
1.1	SATELLITE SYSTEM	7933.570	7950.922.	15884.492
1.2	SHACE GUNSTRUCTION E SUPPORT	7331.180	*602.5<3	15933.703
1.3	TRANSPCRTATIJN	$1 \overline{2405.316}$	22866.199	35335.016
1.4	GKOJND RECEIVING STATIUN	115.699	3018.727	3734.427
1.3	management and integration	1392.403	2151.918	3544.382
1.6	GASS CONTINGENGY	4100.331	5412.945	12072.977

building more than one SPS. Table $2.3-2$ summarizes (1) the investment per satellite (including ground station) of the option of 60 SPS's at a build rate of two $5-G W$ systems per year, and (2) the annual cost per satellite for replacement capital and operations/maintenance. Figure 2.3-1 illustrates a distribution of the costs as the program moves through its phases of DDT\&E, TFU, and production/operations. The investment per satellite (average cost) includes the cost to build a 5-GW satellite, ground receiving station, and apportioned transportation/space construction requirements.

Table 2.3-2. SPS Program Average Cost

WES*	OESCRIPTION	INV PER SAT	$\begin{gathered} \text { ** OPS } \\ \text { RCI } \end{gathered}$	$\begin{array}{cc} \hline \text { COST PEK S } \\ \text { OLM } \end{array}$	SAT PER YEAR total ges	** TUTAL
1	SAIEGLITE RUNER SYSTEH SSPS PROGRAM	13677.008	451.531	193.713	645.244	14522.910
1.1	SATELLITE SYSTEM	-5325-4<2	-205.265	0.705	-205.970	2531.391
1.2	SPACE CONSTRUCTION E SUPPORT	1148.352	51.42 d	11.274	62. 701	1211.033
1.3	TRANSTUKTAİIUN.	1944.004	119.143	00.409	200.212	2149.216
1.4	GROUND KECEIVING STAT ION	3590.822	0.275	78.377	78.652	3669.4 .74
1.5	MANAGEMENT AND INTEGRATION	000.674	18.815	8.561	27.377	628.055
1.6	MASS CUNIINGENCY	1203.413	56.405	13.927	70.332	1333.745

Figure 2.3-1. SPS Cost Relationships

DEVELOPMENT COST

The DDT\&E phase consists of the one-time effort associated with designing, developing, and evaluating the components, subsystems, and systems required for the SPS project. It includes the development engineering, testing, and support necessary to translate a performance specification into a design. It encompasses the preparation of detailed drawings for system hardware fabrication, system integration and-depending on the system, subsystem, or component-structural, environmental, and other required tests. It includes the early supporting research and technology analyses, advanced study efforts and requirements definition related to the SPS microwave power transmission system, power conversion, structure and assembly and power distribution; component development; integrated ground test programs; the Geosat space tests and LEO Shuttle sortie demonstrations, both shared and dedicated. It also includes related Shuttle-derived HLLV transportation systems and development of an SPS prototype demonstration test article which, following demonstrations, will be upgraded to an operational EOTV. Also included are the analyses of data and the necessary redesign and retest activities to meet specifications; and ground support equipment, special test equipment, and other program-peculiar costs not associated with repetitive production. All DDT\&E effort associated with SPS-related support systems such as transportation, space construction base, and assembly/support equipment necessary to accomplish the satellite DDT\&E phase is also included.

DDT\&E and TFU costs are combined in Figure 2.3-2, identifying major percentiles that make up the $\$ 84.5$ billion total. The SPS VTO/HL HLLV is a main contributor to the space transportation requirement along with the rectenna

Figure 2.3-2. Cost Relationship Through the First SPS
support structure/power collection elements of the ground receiving station. TFU space transportation at $\$ 19.67$ billion is divided among vehicle fleet and operations breakdowns as shown in Figure 2.3-3, where the SPS VTO/HL HLLV identifies a five-vehicle requirement and 234 round-trip flights. Space Shuttle
- operations

VEHICIE

```
SPS VTO/HL HLLV (1.3.1)
```

SPS VTO/HL HLLV (1.3.1)
\bullet FlEET

```
    \bullet FlEET
```

IFU COSI
$\$ 9530.5$

- FleEt
- operations

- 4 VEHICLES - 3 ORBItrers. -261 E.T.'s - 10 LRi's -3 CARGO/EM - 261 RT FLIGHTS
- 6 VEHICLES
- 7 FT FLIGHTS
$\$ 3625.7$

519671.2×10^{6}
Figure 2.3-3. TFU Space Transportation
requirements represent vehicles and operations of the traffic model necessary to build the TFU and complete precursor activities covering the early program microwave test article, LEO base, satellite construction base (SCB), initial EOTV's; and to provide personnel during TFU fabrication/assembly and checkout activities. The SCB comprises over 76% of the $\$ 8.6$ billion estimated for space construction and support, with about $\$ 4$ billion required in work support facilities, and $\$ 2.6$ billion in crew support facilities. Energy conversion (25\%) and power transmission (48%) comprise the majority of satellite system costs projected at $\$ 7.95$ billion. The TFU GRS breakdown identifies 88% of the cost in the rectenna support structure and power collector, with major costs in the steel panel/installation and antenna array elements as shown in Figure 2.3-4.

Costing of DDT\&E for the space base elements, STS-HLLV, and the assembly and support equipment followed the more conventional method of determining DDT\&E cost-that is, based upon total subsystem mass, area, or power. This technique was used mainly from the standpoint that the cost data utilized to develop the applicable CER's for these elements were comparable and were developed on the basis of total subsystem mass, area, or power. In the case of the satellite, comparable historical DDT\&E cost data were just not available for the magnitude of the satellite subsystems.

In view of the physical size of the satelite subsystems and the large quantities required for certain parts and components, it was not considered reasonable to estimate the satellite subsystem DDT\&E costs as a function of
the total mass, area, or power per satellite as is generally the method. Rather, it was considered desirable to determine the satellite subsystem DDT\&E costs by the application of a development factor.

The development factor was determined by engineering and, in general, was estimated at a factor considered appropriate to the development of total system or subsystem based on parameters of mass, area, or power. In some cases it was determined that the factor should be slightly higher or directly related to the development scenario of the particular system. For example, crew and work support modules of the LEO, SCB, or satellite operations and maintenance base are of common design but required at different times of the program. Appropriately then, development factors were assessed at 100% for modules required at the first point of usage, whereas a factor of lesser value was used on subsequent modules as a means of compensating for subsequent development or design integration costs.

INVESTMENT AND OPERATIONS

Investment and operations costs developed during the study were presented in Table 2.3-2 and Figure 2.3-1. Investment costs were developed at two levels -initial capital investment (ICI) which is the cost of production, assembly, installation, transportation, and testing of each individual satellite produced, ground station system, and associated effort necessary to bring the power satellite on line to a full 5-GW operational capability; and replacement capital investment (RCI) which are those expenditures relating to capital asset replacement and major maintenance overhauls that are expected to last for more than one year and result in an improvement to the operating system. Replacement capital requirements for the systems used to construct the satellite through IOC are included in the initial capital investment costs. Costs for the fleet, for example, needed to support $O \& M$, are estimated and included as replacement capital investment. Operations costs consist of the effort required to operate and maintain the SPS project over its operational lifetime.

$$
2-8
$$

Investment per satellite is equivalent to the average unit cost of the total SPS requirement (TFU plus Satellites 2 through 60). This total average cost of $\$ 13.88$ billion includes a 15% cost contingency for growth in the mass of WBS elements 1.1, 1.2, and 1.3. Satellite system costs of $\$ 5.33$ billion are made up of power transmission (59\%) and energy conversion (35\%). The GRS estimate of $\$ 3.59$ billion is primarily in the rectenna support structure and power collection system. SPS replacement capital and operations/maintenance phases are estimated at a total annual cost of $\$ 0.65$ billion per year per SPS. The total average (investment) cost per nominal 5mG satellite yields an investment cost of $\$ 3010 / \mathrm{kW}$.

An analysis of potential major cost drivers (Table 2.3-3) was prepared for the Rockwell SPS CR-2 reference configuration of March 1979. Over 90% of the costs are represented within each program phase DDT\&E, TFU, average satellite, and RCI/O\&M. Close review will show that certain elements are consistently cost drivers requiring programmatic studies and analyses of SPS design and technical approaches.

Table 2.3-3. Potential Cost Drivers
Rockwell SPS Reference Configuration (March 1979)

MAJOR PROG, ELEMENTPERCENTAGE OF TOTAL	DDT8E	FU	AVG. SATELLITE	RCI/O8M
	\$33.408	\$51.108	\$13.888	\$0,65B/SAT/YR
	95\%	96\%	91\%	90\%
Satellite Syst. (1.1)	21\%	15\%	36\%	30\%
	- Ground test hardware \& operations	- Power transmission	- Power transmission	- Power transmisslon
	- Power transmission - Precursor EOTV	- Energy conversion - EOTV test article	-Energy converslon	
Space Construction \& Support (1.2)	22% - Space construct. base - LFO basa	15\% - Space construct. base - Satellite O\&M base	7% - Satellite 08M base	5\% - Space construct. base
Transportation/ Ground Facilitios (1.3)	35\% - SPS VTOHL HLLV - Ground facllities - Pars. launch vehicla	44\% - SPS VTOHLL HLLV - PLV - EOTV - Ground facilities	12\% -SPS VTO+HL HLLV - PLV	- SPS VTO HL HLLV - PLV
Ground Receiving Station (1.4)		6\% - Rectenna support structure - Power collection	23\% - Rectenna support structure - Power colliection	- Operation
Management/Integration (5w) and Mass Contingency (153)-(1.5, 1.6)	17\% - Management \& integra. - Mass contingency	16% Management \& integra. Mass contingency	13\% - Management \& integra. - Mass contingency	15\% - Management \& integra. - Mass contingency

A spreading function curve（ojive）was used in the time－phasing of costs against each main line item of the SPS WBS at a subsystem level．The cost spreading was projected for DDT\＆E and TFU costs by using various functions between the $20 / 80$ and $80 / 20$ curve spread．This approach provided distributions supporting a low front－end buildup with the flexibility to shift costs in a manner suitable to the phasing of subsystem development and start－up require－ ments．

Table 2．3－4 summarizes full－scale DDT\＆E and the incremental cost buildup leading to the TFU IOC by the year 2000．A relatively low profile prevails through the 1980＇s，reflecting activity of the ground－based experimental research and technology development programs on power transmission，PD\＆C， energy conversion，large space structures，and space，transportation．The costs expand rapidly through the mid／late 1990＇s as the DDT\＆E activities accelerate and the Phase C／D programs begin on the satellite，space operations，transporta－ tion，and ground receiving station including facilities and equipment for hardware buildup in support of early launches，ground operations，and space construction tasks．

Table 2．3－4．DDT\＆E Plus TFU Cost By Year（\＄Millions）．

YEAR	1.1	1.2	1.3	1.4	1.571 .6	＿－．TOIAL
1980	0.16	0.0	7.67	0.0	2.10	9.32
81	1.55	6.0	47.20	5.05	14.15	$6<.96$
82	5.41	6.0	121.37	c． 0.2	36.41	163.01
83	12.54	0.0	$2<2 .<9$	6.25	58.44	303.26
84	23.50	0.3	342.15	－． 69	107.34	473.71
85	44.17	こ． 0	473.73	C． 14	151．74	$06 \% .78$
86	77.57	0.0	625.27	c． 26	15c．si	885.83
87	1－n．2b	127.61	777.32	6.25	244.03	1251.19
88：	1\％4．1y	70こ．97	150こ．75	O．2y	294.25	2255.45
89	コこ．－＋	1355.5%	1379．j0	0.33	525.73	3ヶット． 75
90.	407.19	1812.37	1742.91	1.35	911.76	4935．59
91	－72． 72	175：．71	2281.03	2.63	1240．52	キャ5こ．54
92	44：－40	1158.96	2937.24	43.67	1451.14	6j3 5 ¢．90
93	1445．24	50.153	30 ここ．37	304.65	1013.62	75.7 .59
94	くご 7 － 5 E	059.73	34ct．so	003.12	1628.74	8426.14
95	2ご34．0．C	1380.53	4.17 .53	79 ¢．15	$15<8.12$	15255．13
96	20 1.31	190． 73	435 c .34	755.63	1324.23	12444.24
97	＜＜ $22 .+5$	1963.53	3957．7＊	601.00	1240.33	9770.32
98	1423.47	1557.52	$\underline{2}=48.40$	34.4 .65	715.51	6331.65
99	6こう．ジ9	835．74	$14=2.47$	96.89	374.71	3364.70
2000	157.19	170.58	259．こ1	12.40	123.67	715.38
	こ．	0.0	0.0	C．C	0.0	C．O
	－	5.3				C． 0
T0T15444．4625433．n9 35 34．97 3734．42 13017．33						$\underline{54504.87}$

Figure 2.3-5 graphically displays the funding requirements and peak year distributions for DDT\&E and TFU, where DDT\&E costs peak at $\$ 4.27$ billion in 1991. This time period corresponds to the activation of Phase C/D operations on the TFU. The TFU costs peak at $\$ 9.18$ billion in 1996 , which is the period of system/hardware production.

2.4 COST EFFECTIVENESS

During the study, a number of analyses were completed on the satellite, transportation, space construction, and ground station elements of the SPS program to develop specific system requirements for use in costing. These included traffic models, mass statements, system definitions, vehicle usages, and trade studies for cost assessments. The majority of these parameters are included in the discussions with appropriate CER's submitted in Appendix B.

Study activities completed under the Exhibit C contract include:

- A detail review and update of SPS economic/cost data as completed and submitted on the Rockwell SPS Point Design Concept of June 1978, focusing on operational requirements of the satellite, ground receiving station (rectenna), and transportation systems for that configuration. The analysis of space transportation elements identified construction and operations/maintenance flights, vehicle usages, and fleet attrition/spares.
- CER's were implemented and programmed on the computer as supplemented with the results of grass roots analysis and engineering assessments based on cost information in the NASA data base, Rockwell contracts, and company-sponsored studies.
- A transportation system study normalized cost data from NASA/Boeing contracts and the Rockwell Shuttle Growth contract study to project costs on the VTO-HL HLLV, Space Shuttle, orbiter, and PLV.
- A grass roots analysis was completed on the GRS to establish rectenna panel, concrete, power distribution, and supporting system costs. The results were compiled into line item estimates and total costs for GRS DDT\&E, TFU and investment.

A rectenna panel payback analysis was completed to determine the cost effectiveness of a panel located in the perimeter of the rectenna farm. Revenue calculations were based on the incident microwave power per panel in the outer edge (Zone V) of the rectenna, as shown in Figure 2.4-1. The annual revenue from electric power was based on 40 mils per kWh , or $\$ 350$ per year. An average cost of $\$ 5000$ per panel was projected for the fixed costs, including some mark-up. Variable costs per panel considered replacements and $O \& M$ projections. Figure 2.4-2 identifies a payback period for panels in Zone V as varying from 3.5 to 14 years. However, the analysis shows that a panel intercepting $6 \mathrm{~W} / \mathrm{m}^{2}$ can break even in a 30 -year period.

Figure 2．3－5．Time－phased DDT\＆E and TFU Costs

3.0 SPS PROGRAMMATICS

3.1 INTRODUCTION

This section presents SPS program plans for the implementation of Phase C/D activities leading to the initial operational capability of the first SPS by the year 2000. These plans describe SPS program schedules and networks, critical items of system evolution/technology development, and the natural resource analysis.

Most key technological issues (as described in Volume III) will have been resolved prior to the main Phase C / D effort and, therefore, technology in that sense is not the real concern of this section of the report on plans. Rather, the size of the SPS undertaking, its producibility, testing, logistics, facilitization, and support requirements dictate the main program plan areas covered in this section (Table $3.1-1$). As a secondary objective, planning areas requiring substantial effort in the immediate future were identified. This work concentrated on the definition of specific problems, the solution of which might require the longest lead times for accomplishment or implementation.

Table 3.1-1. SPS Program Plans

- Program Management	- Product Assurance
- Systems Engineering and	- Facilities
Integration	- Ground Operations
- Design and Development	- Space Operations
- Systems Testing	- Launch Operations
- Ground Support Equipment-D\&D	- Specification Tree
- Manufacturing	- Natural Resource Analysis

The SPS is a vast undertaking, requiring commitments of significant magnitude and long duration. Therefore, a well planned and funded SPS program is essential and the orderly, in-phase development of program plans is necessary to the accomplishment of long-range objectives and in permitting budgetary requirements to be established with sufficient lead time to assure commitment.

Success of the SPS program is critically dependent on bringing together a number of related system projects. In addition to the satellite and ground station, as major items of operational hardware, associated programs such as the Space Transportation System and supporting SPS facilities should be conducted in parallel and time-phased to interface. as an integral part of a coordinated SPS program. Failure to complete any of these program efforts, in keeping with the SPS master schedule, would result in a corresponding delay in the availability of an operational system to serve as a significant national power resource.

3.2 PROGRAM PLANS APPROACH

The basic approach in plans development is to establish interrelationships between specific SPS program plan areas and elements of the WBS. Thirteen program plans (one divided into three sub-plans) were, therefore, identified and analyzed against elements of the SPS WBS. When combined with over 70 WBS elements, the resultant working-level matrix indicated 900 potential intercepts. At this time, however, we are concerned only with those intercepts for which long-range planning would be required or where the requirements analysis indicated major resource considerations, development. or producibility concerns, areas of technology advancement, or support system sensitivity. Accordingly, Table $3.2-1$ presents a summary of principal intercepts resulting from an evaluation of each plan at a working level, as compared with SPS reference solar photovoltaic design data. A total of 115 intercepts was established in three categories-A, B, and C. There are 27 Category A intercepts indicating the potential need of major resources, technology advancement, or support system requirements. Twenty-five Category B intercepts were secondary in magnitude, but important because of the long-term effort. A full description of these categories (including coverage of Category C) is presented in the following paragraphs.

- Category A-Implementation requires major resources in terms of manpower, dollars, raw materials or new facilities, etc. Highvoltage test facilities for power distirbution equipment is an example. Major new system programs, critical to the overall SPS such as Shuttle-derived STS and EOTV, would also fall into this cateogry. HLLV, while not scheduled to support the prototype, needs to be time-phased to become operational by IOC to preserve program continuity. Therefore, HLLV would also be in Category A. New or greatly improved technology, requiring extensive and longterm development, would be placed in this category. One example would be high-rate production capability of thin-film GaAs solar blankets. Finally, items of special concern-but which may be of unknown magnitude-are placed in Category A. Examples would be verification of microwave beam control and utility interface considerations.
- Category B-Requires minor commitment of resources relative to Category A, but nonetheless, substantial long-term commitment may be required. An example would be verification tests of the rotary joint and slip rings.
- Category C-Certain programmatic aspects must be implemented and maintained over the long term to provide continuity and coordination. All planning areas should be maintained at some level of effort, and are so designated at the program management or SE\&I levels.

Table 3.2-1. SPS Program Plans/DDT\&E Relationship Matrix

Table 3.2-1. SPS Program Plans/DDT\&E Relationship Matrix (Cont.)

The next step, as shown in Figure 3.2-1, was to prepare a summary planning sheet for each of the designated program plans. These were structured to include (1) a description of the plan; (2) a synopsis of requirements on technical and programmatic definition, associated with elements of the SPS point design description; (3) major resource considerations; and (4) a discussion section that established parameters, guidelines, assumptions, or constraints with regard to the respective plan. Areas considered critical or important to the completion of a specific WBS element were researched, identified, and studied. SPS point design requirements were constantly iterated during this period to develop line item descriptions, within identified categories, of Phase C/D DDT\&E program planning concerns. The results of this work are presented on impact sheets as attached to the various plans included in a subsequent part of this section.

Figure 3.2-1. Program Plans Development Logic

3.3 PROGRAM PLANS

The implementation of each plan entails a scope of work such that the summation of all plans will cover every facit of organization, management, and hardware/ software activity necessary to carry out the Phase C/D SPS efforts. Although the implementation of certain planning activities may be delayed, it is necessary to conduct some effort in each plan area throughout all phases of the program for purposes of coordination and continuity.

Overall program planning requirements, schedules, milestones, and master network are contained in this part of the report. Program elements are described as they apply within the program plan area. Special emphasis is placed on any major or critical area that is likely to have an impact or add some degree of risk in meeting SPS program objectives, schedules, and cost constraints. Where appropriate, the data are supported with analyses or discussions to provide the applicable level of assessment based on the SPS concept definition at this time, such as that presented in Plan 13 on natural resources.

The planning data presented in this section are contained within the following program plan areas:

1. Program Management-SPS schedules were developed over the program through year 2000, with emphasis on the 1980-1990 period. These schedules are developed to incorporate NASA, MSFC and DOE programmatic milestones applying to the DDT\&E phases. On this basis, a series of SPS schedules showing design, development, technology advancement, production, operations, and initial phasing were developed and have been included in this plan.
2. Systems Engineering and Integration
3. Design and Development
4. Systems Testing
5. Ground Support Equipment (GSE) Design and Development
6. Manufacturing
7. Product Assurance
8. Facilities
9. Ground Operations

- Ground Integration
- Maintenance and Refurbishment
- Logistics

10. Space Operations
11. Launch Operations
12. Specification Tree
13. Natural Resource Analysis

SPS DDT\&E PROGRAM PLANNING SUMMARY

PLAN
1

PROGRAM MANAGEMENT

PROGRAM PLAN DESCRIPTION

This plan shall include project schedules showing key milestones, test, decision points, interfaces with other program elements, hardware deliveries, facility requirements, major reviews, reporting requirements, etc.; and logic networks depicting major milestones and the interrelationship of events and activities throughout the design, development, operations, technology advancement, technology verification, and commercialization phases with the identification of critical paths. Any analyses necessary to support the defined program and schedules shall also be included. Particular emphasis shall be placed on the 1980-1990 time frame.
All major hardware and software-flight, as well as GSE-required for the development and operational phases, and identified in other sections, shall be scheduled including any hardware, equipment, and services required to be goviernment-furnished and any long-lead hardware.

Major make-or-buy assumptions used in developing the recommended program shall be identified with supporting rationale.

SPS GaAlAs ROCKWELL REFERENCE CONFIGURATION PROGRAM REQUIREMENTS

- Solar Photovoltaic CR-2 Concept Definition
- 30-Year Design Life with Maintenance
- Nominal 5-GW Busbar Output at End of Life
- Satellite-DDT\&E Configuration
- SPS Phase C/D DDT\&E Program Coverage
- 2000 IOC for SPS Operation
- State-of-the-Art Technology, 1987
- Technology Verification Period, 1981-1987
- Planning in Accordance with SPS Work Breakdown Structure (November 1978)
- SPS Schedule and Network Approach
- Specify Key Milestones, Decision Points, Interfaces
- Identify Make-or-Buy Approach

RESOURCE CONSIDERATIONS

- Technical and Management Personnel
- Program Planning and Control
- Engineering Management
- Manufacturing Management
- Contract Administration
- Support Management
- Quality Assurance Management
- Configuration Management
- Data Management
- Support Materials, Equipment, and Facilities

SPS DDT\&E PROGRAM PLANNING SUMMARY

PLAN	TITLE	
1		PROGRAM MANAGEMENT (Cont.)

DISCUSSION

The program management plan addresses all schedules, logic, budget planning, and decision-making functions. Its implementation produces only software. However, it is the only level at which all SPS activities are coordinated. It is also the level at which major system interfaces occur, such as between satellite/rectenna and satellite/STS. Therefore, although it represents no major impact on its own, it is essential that the plan be started early and updated continuously to reflect both current activity and future planning at this summary level.

Major systems which are coordinated through this plan are:

- Satellite - Transportation
- Space Construction and Support - Ground Receiving Station

One function of the plan is to assure continuity and an orderly transition from Phase C/D through IOC and into the operational phase. Often, large programs encounter peaks and valleys in funding and manpower needs. When these occur, the overall economy is normally elastic enough to accommodate such changes; but this is not the case for SPS. Due to the huge size of the SPS undertaking and the order-of-magnitude increase in resource requirements after IOC, it is essential to plan an orderly buildup as a continuous process during Phase C/D and beyond. Only in this way can a healthy economy be maintained and the solar resource be exploited without a large gap occurring between IOC and significant operational buildup. The program management plan provides the vehicle for planning this buildup and making the necessary transition. As an example, the HLLV will not be operational during the main Phase C/D. However, its development will require a major program which must be time-phased to integrate with the overall SPS in the IOC time frame as an essential element in follow-on construction and operation of multiple systems.

A sumary SPS schedule is presented in Figure l-1. It identifies ground-based exploratory research activities and key technology programs preceding the 1990 Phase C/D commercialization decision. The 335-MW EOTV precursor pilot plant is shown as an extension of the systems test activity. The $1990 \mathrm{C} / \mathrm{D}$ kick-off will activate work on all major elements leading to the SCB fabrication, EOTV test article assembly, transfer to GEO, and precursor testing/beam mapping. The growth Shuttle and Shuttle-derived cargo carrier will have an earlier start to transfer the necessary mass to orbit. Subsequent SPS VTO-HL HLLV operations will combine with the Shuttle for full-scale build of the TFU. The GRS is proceeding as an earth-based receiver of MW energy.

Figure 1-1. SPS Summary Schedule

SPS DDT\&E PROGRAM PLANNING SUMMARY

PLAN	TITLE	
1	PROGRAM MANAGEMENT (Cont.)	

SPS Program Schedules

The objectives, magnitude, complexity, and duration of the SPS program demand an orderly and logical approach that will provide full implementation of program projects to achieve an operational SPS consistent with the plan. Accordingly, a major requirement existed for the development of fully integrated schedules/networks at all levels of the multi-faceted WBS. To provide an overall control of the scheduling activity, control milestones were established and maintained in a logic network of integrated program activities (Figure 1-2).

The network divides the program milestones into four major sub-categories which include:

- Technology verification and full-scale prototype development
- Support facilities and equipment development, including transportation
- Major programmatic milestones
- Continuation decision points

These milestones logically support succeeding events in their own subcategories and, in certain cases, will support or impact succeeding milestone events in other sub-categories.

The central catalyst for development of the satellite power system and its primary supporting equipment and facilities is the SPS decision category of milestones. Examination of the network will demonstrate that supporting equipment and facility developments encompass a scope of effort nearly equal to development of the satellite system itself; therefore, with due consideration taken for the technical lead times required for development of each major subsystem, an overall plan was established that incorporates parallel development of the several major subsystems in order that their timely completion supports major satellite system development objectives.

The decision milestone sequence was developed to program the flow of separate developmental subprograms. Timely promulgation of these decisions will undoubtedly exercise overriding impact on the program and its progress. Further, justification for each of these decision areas-for the most partwill be predicated on the achievement of specified goals within a subprogram and may be only casually related to the results of major efforts in other subprograms at that point in time. As an example, the long-lead technology required for development of an HLLV transportation system whose availability is critical to the construction and deployment of the initial satellite in the year 2000, necessitates initiation of a full-scale development program in the year 1988. This precedes a satellite systems technology readiness demonstration conducted with the "multi-test platform: test article by two full years.
a Davice
FEAGE: + Develap. ghannesg:

\square

	SPS DDT\&E PROGRAM PLANNING SUMMARY
PLAN	TITLLE
1	PROGRAM MANAGEMENT (Cont.)

To delay a transportation development decision until a high-confidence level is achieved through the satellite systems demonstration would vitally impact the program capability to achieve IOC by the year 2000.

Other SPS program schedules have been prepared to identify (1) systems technology development tasks, as will be shown on the DDT\&E Technology Advancement Program Schedule; (2) detail design, production engineering, equipment and production operations activities as will be shown on the $D D T \& E / T F U$ Full-Scale Development Schedule; (3) a "special emphasis" network on the technology development steps of a microwave transmission system; and (4) a phasing schedule on the site activation and construction sequence of the ground receiving station (GRS).

1. SPS DDT'\&E Technology Advancement Program Schedule

The objective of this phase is to develop a system/subsystem technology base upon which a full-scale development program may systematically evolve. . The schedule of Figure l-3 addresses those key technology elements whose development is requisite to an overall SPS subsystem performance design and definition and the development of test equipment and facilities needed to support this technology effort. SPS hardware development in this phase is confined to experimental and limited prototype articles needed to prove out design concepts such as the areas covered in MPTS, power conversion, power distribution, and structures. The transportation effort during this phase is primarily directed at providing preliminary design definition to those vehicles needed for specific transportation missions further identified in subsequent program phases.

The culmination of this phase is through the integration of these subsystems into a GEO multi-test platform and application of this test article in performance of a total system technology readiness demonstration by late 1989.

2. DDT\&E/TFU-Fuli-Scale Development Program

The objective of this program phase is to produce and operate a full-scale prototype 5-GW satellite power generating system whose performance characteristics will be the basis of justification for continued satellite power systems commercial development. Therefore, the schedule of Figure 1-4 addresses only those tasks and program elements which directly impact development of prototype operational power system hardware/software plus development of equipment and facilities which directly support tasks aimed at this objective.

Included in this schedule are broad-based iterations of (1) designs and definitions of subsystem production hardware (based upon data, specifications, and experimental hardware developed during the technology verification program phase); (2) manufacturing technology, equipment, and facilities that need

PROGRAM SCHEDULE
(DOTTE /TFL DEVELOPMENT PHASE)

Figure 1-4. SPS Program Schedule (DDTGE/TFU Development Phase)

SPS DDT\&E PROGRAM PLANNING SUMMARY

PLAN
1

PROGRAM MANAGEMENT (Cont.)

development; and (3) the prototype production operations and sequences. Emphasis in this schedule is also placed upon ground/space power system assembly and integration operations and the major equipment and facility development programs required to support these operations. The transportation schedule section is confined to those vehicles needing development for mission use during this particular program phase. It describes the phasing of (1) STS growth/derivative HLLV's which will be used to transport the mass to orbit, facilities, equipment, and personnel to LEO in support of the satellite construction base and its activation; (2) SPS-dedicated HLLV's (VTO-HL) to transport the main satellite construction mass to LEO; (3) the COTV (EOTV) which will be used for large interoribtal cargo mass transfer; and (4) the personnel and high-priority cargo-carrying space vehicles (IOTV, POTV. and PM). The. ground station system/subsystem design, development, and construction scenario has been addressed as it will support the overall program. WBS numbers and titles are referenced in the margin, and have been used to provide the basic structure and layout for this schedule.

3. Special-Emphasis Network-Microwave Technology

Current technology exploration studies indicate that microwave technology advancement will be a single most-significant pacer in total program development. In order to illustrate the need for early resource allocation directed toward near-term technology exploration and test verification of the concepts now under consideration, a time-oriented logic network was developed as shown in Figure 1-5. It traces the full microwave scope of this effort and highlights program continuation decision gates at critical junctures.
Phase I (1980 through 1985) describes the tasks (including their timing and interrelationships) needed to define requirements, develop concepts, perform trades, conduct analysis on alternate designs, perform tests and evaluations on these alternative concepts and, finally, make a concept selection which will be the baseline for full-scale development.

The network also describes parallel development programs on ground test facilities, equipment, instrumentation, and software needed to support the engineering development process.

Phase II (1986 through 1989) describes the development of equipment and test. articles needed to provide performance verification of the complete microwave system alone, and the microwave system integrated with key elements of the multi-test platform program for a complete earth/ground-based technology demonstration scheduled for late 1989.

Phase III (1990 through 2000) describes the full-scale development of the subsystem along with the parallel development of all other satellite subsytems. The program culminates with a performance demonstration of multiple subarrays as integrated with other systems in the precursor pilot plant and, finally,

1983	1984	1985	1986	198

VE POWER TRAPSAIIIICN SUSTM - DEVELOER ENT HETWOKK

1987	1488	1989	1990	\square

| 01991 | 1919 | \cdots | \cdots | 1095 | 1996 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |

1975	1996	1998	1999	200	.

Pigure 1-5. SaS Microwave F-wer Transmission system 3-21, 3-22

in the all-up systems test of the 5-GW initial satellite. To reiterate, the results of earlier ground-based microwave technology development and performance verification activities will be a most significant factor in evaluating the feasibility of continued total system development.

4. GRS site Activation Schedule

A series of detail phasing schedules were developed on the activation of each of the first four ground station receiving sites (Figure l-6). Operational sequences were identified for site survey, ground preparation, panel fabrication, concrete placement, facilities installation, and checkout activities. Contacts with A\&E, equipment manufacturing, concrete, and construction firms provided additional information on the duration and sequence of operations from their experience on programs of this size. Figure $1-7$ is an integrated summary schedule of major events in constructing the ground receiving station and emphasizes the utilization of construction equipment and its transfer from site to site as required to maintain the build-rate of two rectennas per year. It was concluded that the equipment from Site 1 would be available for use on Site 3. This information on equipment utilization, site sequencing, and equipment lifetimes was used to establish total resource requirements and cost estimates for the program.

Figure 1-6. GRS Phasing Schedules

SPS DDT\&E PROGRAM PLANNING SUMMARY

PLAN TITLE
 SYSTEM ENGINEERING AND INTEGRATION

PROGRAM PLAN DESCRIPTION

This plan shall address the planning for the systems engineering and integration functions to include items such as mission planning, system and subsystem requirements, interfaces (ICD's), verification testing requirements, and payload integration. Costs shall be a major consideration in this planning.

SPS POINT DESIGN PROGRAM REQUIREMENTS

- Solar Photovoltaic CR-2 Concept Definition
- System and Subsystem Requirements
- Mission Planning
- Interface Control Documents
- Verification Test Definition Requirements
- Payload Integration
- Systems Development and Operations Monitoring
- SPS Cost/Economics

RESOURCE CONSIDERATIONS

- Technical and Management Personnel
- Engineering Management
- Safety
- Reliability
- Maintainability
- Support Management
- Support Materials/Equipment and Facilities

DISCUSSION

This plan deals with many software items which must be carried through the entire program. Typical are the definition of hardware requirements verification testing, mission planning, ICD's, payload integration, and costs. Each of these elements may affect hardware design and development in the conceptual stages. Major systems are assigned to Category C under this plan since system requirements must be established, interfaces defined, and continuous updating performed from the earliest stages of the program. Perhaps most importantly, this plan will provide for the development of all cost data, CER's, and costing. These data will form the basis for establishing long-range budgeting for economic projections.

SPS DDT\&E PROGRAM PLANNING SUMMARY

PLAN	TITLE	DESIGN AND DEVELOPMENT

PROGRAM PLAN DESCRIPTION

This plan shall address the design and development of the system and subsysr tems, including design engineering, development and qualification testing. The hardware and software to carry out these activities shall be identified. The technology and/or development status of each subsystem shall be discussed in sufficient detail to allow for a management assessment of program development risks.

SPS POINT DESIGN PROGRAM REQUIREMENTS

- Solar Photovoltaic CR-2 Concept Definition
- System and Subsystem Drawing/Specification Requirements
- Supporting Software and Hardware Requirements
- Development Program Definitions and Design Requirements
- Structural elements-joining and stiffening
- Beam machine development
- Solar blanket design efficiency and reliability
- Microwave reliability and efficiency requirements
- Rectenna design optimization
- Utility interface design requirements
- Qualification Test Procedures and Requirements
- Design Interfaces of Systems/Subsystems

RESOURCE CONSIDERATIONS

- Technical and Management Personnel
- Design, development, and qualification testing manpower
- Supporting Hardware and Software
- Support Materials/Equipment and Facilities

DISCUSSION

This plan provides for all design and, as such, produces drawings, specifications, and other software. It is a major engineering effort and therefore will have significant impact in terms of manpower requirements. However, there is reason to believe that these resources can be made available from existing technical labor markets, such as the aerospace industry, as needed. The same can be said for technology needs in terms of analytical tools, computer software, etc. Two areas are of present concern. First of all, the status of technology and development related to key subsystems and components must be determined and extrapolated to the time frame where needed for the SPS prototype. (Examples are klystrons and GaAs solar cells.) This will permit a risk assessment to be made and justify the allocation of resources to most critical developmental areas. For example, stockpiling of solar cells for the SPS prototype will require a production rate of about 500 MW per year

SPS DDT\&E PROGRAM PLANNING SUMMARY

PLAN	TITLE		
3	DESIGN AND DEVELOPMENT (Cont.)		

starting in the late 1980^{\prime} s. Risk assessments under this plan would be a basis for implementing major developmental effort on GaAs to provide thinfilm, high-efficiency cells.

Secondly, developmental programs must be identified, planned, and carried out to assure that proof-of-concept will actually take place as scheduled. This effort assumes that the resolution of key issues or research activities will have been completed under technology development projects. It may, however, include development of equipment such as beam machines, development of large-scale, in-space life support and operational capability, and development of critical components or modules such as prototype solar blankets. Several critical long-range areas of concern are identified in Table 3-1.

Table 3-1.
SPS DDT\&E Program Planning Considerations (Phase C/D) Impact Sheet
Sheet 1 of 2
PLAN NO. 3 TITLE: DESIGN AND DEVELOPMENT

| WBS ELEMENT | IMPACT | CAT-
 EGORY |
| :--- | :--- | :--- | :--- |
| Satellite System | Satellite design and supporting development will be a major undertaking due
 to size and complexity well beyond anything previously attempted in space. | A |
| $1.1 .1 .1,1.1 .2 .1$, | The methods of designing the satellite construction base (SCB) and EOTV test | | article structure will evolve as smaller structural platforms for demonstration projects as designed and developed during earlier phases. The design approach must be closely coordinated with the development of in-space processes and manufacturing equipment throughout the program. This will assure that the design of the structural elements, their joining and stiffening will be compatible with the most effective approach to manufacturing. Design and development of beam machines and fixtures specific to the SCB and EOTV are included under WBS 1.2. Capability for producing large structures in space must be developed.

$1.1 .1 .4,1.1 .6 .2$,
1.1.6.3

Rotary Joint, Mechanisms
1.1 .1

Energy Conversion

Special consideration must be given to design and development to provide high reliability of the slip rings and brushes. Parts replacement must be considered.

Design and development of solar blankets must address the integrated power source at this level although most hardware-related effort will be at a lower level. Energy conversion is among the most critical subsystems requiring extensive development and long lead times. The design and development of the solar blanket will be, perhaps, the most critical item in the SPS. Considerable development will be required, extending over a long period before a suitable design evolves which combines the essential features of lightweight, high efficiency, high reliability, high proton damage resistance, satisfactory handling, and high production and low cost.

Table 3-1.
SPS DDT\&E Program Planning Considerations (Phase C/D) Impact Sheet
 is contemplated.

Figure 4-1. SPS Multi-Test Platform Evolution
It remains to be resolved at what levels of assembly actual systems tests will take place and what scope these tests will assume. However, Table 4-1 identifies several areas of concern for reference at this point in time as they apply to main elements of the SPS program.

Table 4-1.
SPS DDTबE Program Planning Considerations (Phase C/D) Impact Sheet

\begin{tabular}{|c|c|c|}
\hline PLAN NO. 4 \& ITLE: SYSTEMS TESTING \& \\
\hline WBS ELEMENT \& IMPACT \& \[
\begin{aligned}
\& \text { CAT- } \\
\& \text { EGORY }
\end{aligned}
\] \\
\hline \begin{tabular}{l}
1.1 \\
Satellite System, \\
Rotary Joint, \\
Mechanisms
\end{tabular} \& \begin{tabular}{l}
Certain tests can only be performed at the satellite level. It is assumed that combined power source/MWPTS/attitude control, etc., would be accomplished as an integrated test program. Systems-level tests will be preceded by component checkout, interface verification, and subsystem testing. Questions which must be answered include: In what increments will a satellite be brought on line? How much of the antenna must be installed before first blanket is activated? Must blankets be covered during installation? (They will be "hot" whenever exposed to direct sunlight.) Should reflectors be installed for checkout, or later after total blankets in each bay are installed? Rectenna converters, switch gear, etc., must be brought to readiness before any blanket can be connected. In addition, are there stability, control, switching, etc., tests which must be performed at this level without ground station interface? \\
All moving parts such as the rotary joint should have extensive long-term test data to assure reliability. While each of these items may not be of major magnitude relative to the systems programs they may, in total, represent a substantial testing effort. Due to the long lead time involved on the SPS, the opportunity exists to develop the necessary test data provided planning is started early.
\end{tabular} \& A

B

\hline Energy Conversion \& Similar questions arise. What is the testing concept and sequence? For test purposes, will the smallest unit be a single blanket (say, $750 \times 25 \mathrm{~m}$)? How will power source modules include switch gear, regulators, etc., for testing purposes? \& A

\hline $$
\begin{aligned}
& \text { 1.1.1.3 } \\
& \text { Solar Blankets }
\end{aligned}
$$ \& The SPS will require approximately $27 \times 10^{6} \mathrm{~m}^{2}$ of solar blankets starting in 1996 for delivery and installation through 2000. Buildup will require average production of $675 \times 10^{6} \mathrm{~m}^{2} /$ year for four years starting in 1996. Testing will require ten or more "blimp hangar" size test stands capable of testing blankets on a three-shift basis. Testing of each solar blanket would be done \& A

\hline
\end{tabular}

Table 4-1.
SPS DDT\&E Program Planning Considerations (Phase C/D) Impact Sheet
Sheet 2 of 3

Table 4-1.
SPS DDT\&E Program Planning Considerations (Phase C/D) rmpact Sheet
Sheet 3 of 3

SPS DDT\&E PROGRAM PLANNING SUMMARY			
PLAN 5	TITLE		
GROUND SUPPORT EQUIPMENT (GSE)			
PROGRAM PLAN DEFINITIONS			
This plan shall address the design and development of the GSE and its associated software required for checkout of the systems and subsystems at the warious locations, i.e., factory, launch site, etc. The hardware required in the design and development of the GSE shall be identified.			

SPS POINT DESIGN PROGRAM REQUIREMENTS

- Solar Photovoltaic CR-2 Concept Definition
- GSE Design/Drawing and Specification Requirements
- Supporting Software and Hardware Checkout Requirements

RESOURCE CONSIDERATIONS

- Technical and Management Personnel
- Supporting Hardware and Software
- Support Materials/Equipment and Facilities

DISCUSSION

In total, GSE requirements will be substantial, particularly in support of launch and transport vehicles. Individual support equipment for satellite/ rectenna systems, however, should not require major expenditure of resources percentagewise. Long-range planning should be a natural fallout of the design process which must consider those items that are larger in size or quantity, such as the solar blankets or rectenna dipole panels, methods of transporting, servicing, and handling (Table 5-1).

Table 5-1.
SPS DDT\&E Program Planning Considerations (Phase C/D) Impact Sheet
Sheet 1 of 1

PLAN NO. 5	TLE: GSE DESIGN AND DEVELOPMENT	
WBS ELEMENT	IMPACT	$\begin{aligned} & \text { CAT- } \\ & \text { EGORY } \end{aligned}$
1.1.1.3 Solar Blankets 1.3 Transportation 1.3.7 Facilities 1.4 Ground Receiving Station	Equipment to handle, transport, deploy, and service solar blankets after manufacture may be critical due to large size and fragile nature of blankets. Major system program/major support equipment Heavy investment required for solar blanket and high-voltage testing. Checkout, maintenance, repair, and replacement of large number of dipole panels in place may require special support equipment exclusive of test gear. Note. Although GSE will represent a substantial investment, neither the resource allocation and planning nor technology appear to be of sufficient criticality for consideration at this time.	C C C C C

Note. Although GSE will represent a substantial investment, neither the resource allocation and planning nor technology appear to be of sufficient criticality for consideration at this time.

SPS DDT\&E PROGRAM PLANNING SUMMARY	
PLAN 6	TITLE
PRoGRAM PLAN DESCRIPTION	
This plan shall address the manufacturing requirements for all the development	

SPS POINT DESIGN PROGRAM REQUIREMENTS

- Solar Photovoltaic CR-2 Concept Definition
- Structure
- Solar blankets, $27 \times 10^{6} \mathrm{~m}^{2}$ per satellite
- Power distribution and conditioning
- Microwave power
- Rectenna
- Flight and Ground System Manufacturing Requirements and Producibility Rates
- Unique Manufacturing Facilities-Ground and Space
- Special Test Equipment and Support Tooling
- Quality Control Support Requirements

RESOURCE CONSIDERATIONS

- Technical and management personnel
- Operational/support personnel
- Supporting hardware and software
- Support materials/equipment and facilities
- Special/unique test equipment

DISCUSSION

This plan covers all deliverable hardware. As such it includes ground systems, flight systems, and GSE. Make-or-buy assumptions of the program management plan will be used to develop detailed manufacturing plans which relate to a particular supplier of specific hardware. Such plans obviously are strongly dependent on having a firm design concept established. Unique facilities, tooling, and $S T E$ required to support manufacturing activities must be identified. High-voltage test equipment, for example, must be developed for use in manufacturing the multitude of items, indicated in Figure 6-1, at the component level (such as switch gear, regulator, and circuit breakers). Quality control requirements and procedures must be identified and developed. Again, these are strongly dependent on the design concept.

	SPS DDT\&E PROGRAM PLANNING SUMMARY
PLAN	TITLE
6	MANUFACTURING PLAN (Cont.)

Development of high-production, thin-film GaAs technology is probably the most critical item and will require a long-term, well-funded program. An equivalent amount of GaAs production will be required in the same time frame to support buildup of a prototype stockpile and continuation in support of the operational SPS fabrication.

Large investments will also be required to manufacture power distribution, conditioning, and transmission components. Examples are switch gears, converters, and klystrons. (Assembly of the satellite as a power station would be covered under Plan 10, Space Operations.) Such items as beam machine complexes, templates, etc., must be developed specific to the prototype. These may differ considerably from those necessary to support construction of the Nth satellite due to the longer period permitted for staged fabrication of the former. A multitude of special assembly, fabrication, inspection, and test techniques must be developed which pertain to manufacturing in orbit. Some items may be partially fabricated and assembled under this plan with completion under Plan 10 (Space Operations). "Waveguides" is an example. These may be built as full box sections or in half-sections to save volume. The latter would then be transported to the satellite and assembled. Manufacturing and product assurance techniques must be such that waveguides can be placed into operation with "zero" defects since internal arcing due to burrs or whiskers would result in early failure of the guide.

An assumed buildup for one of the most critical items (solar blankets) is presented in Figure 6-2 in order to provide some perspective for the scope of the required manufacturing effort. It should be noted that production will peak at 1145 m per hour in 1997, and will need to increase in subsequent years to support the mature commercial program. Table 6-1 broadly addresses some of the manufacturing facilities development tasks needed to support subsystem production for planned prototype and commercial space operations.

Figure 6-2. SPS Program Schedule (DDT\&E/TFU Development Phase)

Table 6-1.
SPS DDT\&E Program Planning Considerations (Phase C/D) Impact Sheet
Sheet 1 of 2

PLAN N0. 6	TITLE: MANUFACTURING	
WBS ELEMENT	IMPACT	$\begin{aligned} & \text { CAT- } \\ & \text { EGORY } \end{aligned}$
1.1 Satellite System	Once point design is firm, an overall satellite manufacturing plan must be provided in detail.	B
$1.1 .1 .3$ Solar Blankets	For the prototype SPS alone, a $27 \times 10^{6} \mathrm{~m}^{2}$ area af solar blankets is required. Starting in 1996 it is suggested that a production rate be developed to support test, TFU, and follow-on production. Average production during 1996 would be $3.3 \times 10^{6} \mathrm{~m}^{2}$ per year. The development of GaAs solar blankets meeting production, reliability, efficiency, and weight goals will be a major SPS technical challenge.	A
1.1.1.4 Power Distribution and Conditioning	Problems relate to the large quantity of high-voltage, highly reliable components which must be produced. Figure 6-1 provided some idea of the complexity of the power distribution subsystem. High-rate, automatic production of l-mil aluminum wire junctions with zero defects is required. Large numbers of regulators, switch gears, and dc/dc converters will be involved, plus system complexity with IMS control for array regulation, load control, and associated interfaces.	A
1.1.2.2 Microwave Subarrays	Comments similar to the above apply to the MWPTS. If a decision were made to fabricate microwave resonant cavity radiators of ten types at the launch site, a manufacturing facility of approximately $150,000 \mathrm{~m}^{2}$ must be provided. It is envisioned that the facility will have ten automated lines for cutting, perforating, and corner-welding of power modules. To achieve maximum payload density objectives, consideration is being given to packaging these panels and all other requisite components into appropriate payload configuration for further assembly into klystron power modules, subarrays, and mechanical modules for final installation in the antenna. There are 135,864 power modules, 6993 subarrays, and 777 mechanical modules per each antenna. The manufacturing plan for actual installation, connection, and checkout of this equipment will be covered under Plan 10 (Space Operations).	B

Table 6-1.
SPS DDT\&E Program Planning Considerations (Phase C/D) Impact Sheet

PLAN N0. 6	ITLE: MANUFACTURING	
WBS ELEMENT	IMPACT	$\begin{aligned} & \text { CAT- } \\ & \text { EGORY } \end{aligned}$
1.1.7 System Test Hardware	Test articles for all components and subsystems will be built for qualification testing. This does not include flight or operational hardware.	B
1.2 Space Construction and Support	Includes all special support equipment (teleoperators, beam machines, etc.) to assemble, check out and maintain the satellite system.	C
1.3 Transportation	Each transportation element requires a separate manufacturing plan as part of the individual program effort.	c
$\begin{aligned} & 1.3 .7 \\ & \text { Facilities } \end{aligned}$	Manufacturing requirements for solar blankets, power conditioning and distribution components and rectenna modules will require extensive facilities.	A
1.4.2 Support Structures	Arrays will require roughly 4 million pedestals plus provisions for mounting switch gear, dc/dc connectors and cable runs. Large undertaking for planning purposes but not a technical problem.	C
1.4.3 Dipole/ Rectivier Elements (Power Collection)	Similar technology could be used as for the solar blankets. However, modules could be of more manageable size. Weight will not be a problem but strength/ weatherability will be factors not encountered in space. High-rate production must be accomplished on site for production of over $11,400,000 \mathrm{multi-}$ layered panels of four types assembled into 580,500 subarrays.	A

-

SPS DDT\&E PROGRAM PLANNING SUMMARY

PLAN	TITLE
7	

PRODUCT ASSURANCE

PROGRAM PLAN DEFINITION

This plan shall address the program requirements for quality assurance, reliability assurance, and systems safety. NHB 5300.4 (ID-1) shall be used as a guide in developing these requirements.

SPS POINT DESIGN PROGRAM REQUIREMENTS

- Solar Photovoltaic CR-2 Concept Definition
- Quality Assurance Requirements-NHB 5300.4 (ID-1)
- Reliability Assurance Requirements-NHB 5300.4 (ID-1)
- Systems Safety Requirements-NHB 5300.4 (ID-1)

RESOURCE CONSIDERATIONS

- Technical and Management Personnel
- Support Equipment/Facilities and Software

DISCUSSION

Product assurance plans, comprising the disciplines of safety, reliability, and quality assurance, will provide direction for the overall satellite system. These plans will be applicable to vehicle contractors (SPS, HLLV, COTV, STS, and support equipment) and site contractors (ground receiving station). The plans, reflecting NHB 5300.4 (ID-1) requirements and associated data reporting requirements, will provide the basis for more detailed plans at the various vehicle and site levels during design/development, manufacturing, test, and operations. Subsequently, plans will be required from the industrial subcontractors. The scope of these plans will vary, depending on the type of procurement.
Quality assurance plans relate primarily to the vehicles; site (facility) operations normally are administrated through quality procedural manuals covering all quality aspects of site operations. These manuals will be compatible with overall program quality requirements.

While the implementation of product assurance plans will entail a relatively small expenditure of resources, the consideration entailed in product assurance may have far reaching effects in terms of providing for reliability and safety of equipment and personnel.

NHB 5300.4 (ID-1) provides guidelines for development of product assurance plans relative to the Space Shuttle. These plans encompass the areas of safety, reliability, maintainability, and quality assurance. While each of these will require planning unique to the $S P S$, the area overriding concern is safety. The logistics, fabrication, operation, and maintenance activities associated with the satellite system will require manned space activity well beyond any previous space endeavor. Due to the large size of the satellite,

SPS DDT\&E PROGRAM PLANNING SUMMARY

PLAN
 TIT LE

7

PRODUCT ASSURANCE (Cont.)
rapid means of transporting men and materials to the most remote areas must be developed. This, along with associated inspection and maintenance must be accomplished safely with minimal need to shut down any portion of the highvoltage grid. Replacement of certain items might be scheduled for periods of eclipse; however, most activities will take place aboard a fully operating power station.

Ground safety will also be of concern. Consider the rectenna site, for example. Besides the microwave potential hazard, the high ac or dc voltage conditioning equipment represents potential lethal voltages to maintenance personnel required to repair or service that equipment. The heights of the various equipments represent an occupational hazard relative to falls or tool droppage. Also, lightning strike potential is affected by the heights, conductors, and array size.

Considerations for other major systems and subsystems are similar in scope. Routine in-orbital operations, for example, will be undertaken on a large scale. Life support and safety will be major drivers in the design of each space system. The more significant product assurance considerations are summarized in Table 7-1.

Table 7.
SPS DDT\&E Program Planning Considerations (Phase C/D) Impact Sheet

		Sheet 1 of	1
	PLAN NO. 7	ITLE: PRODUCT ASSURANCE	
	WBS ELEMENT	IMPACT	$\begin{aligned} & \text { CAT- } \\ & \text { EGORY } \end{aligned}$
	1.1 Satellite System	Product assurance elements must be established which apply to daily operations: in the major manufacturing, installation, and operations in space. Safety aspects must consider protection of personnel and equipment during inspection, maintenance, repair, and replacement operations in the midst of an operating antenna or solar blanket field.	C
	1.1.1 Energy Conversion	System safety and reliability will be addressed at the system level since inspection, M / R, etc., must be performed on equipment with the photovoltaics and concentrators operating in combination.	C
	$\begin{aligned} & \text { 1.1.1.3 } \\ & \text { Solar B1ankets } \end{aligned}$	$27,500 \mathrm{~m}^{2}$ or more of solar blankets will be produced each day with associated checkout, inspection and repair. This element includes product assurance considerations on the ground and in orbit.	C
\pm	1.1.2 Power Transmission	Verification of pointing accuracy and interlock capability will be essential to public acceptance of SPS. Quality assurance considerations will relate to producing zero-defect waveguide assemblies in orbit.	B
0	1.1.4 ACS	Safety aspects of fueling and performance M\&R, etc., of multiple thrusters of the attitude control and stationkeeping system.	C
1 0 1 8 0 0 1 1 1 N	$\begin{aligned} & 1.5 \\ & \text { Program } \\ & \text { Management } \end{aligned}$	The product assurance plan will not entail substantial financial commitment in itself relative to some other plans. However, it is assigned to a high category at the summary level to emphasize the critical impact of safety and reliability on the SPS. Requirements established by the product assurance plan will have a strong influence on design and may result in considerable budgetary impact in testing, manufacturing, and operations.	B

SPS DDT\&E PROGRAM PLANNING SUMMARY

PLA
8

FACILITIES

PROGRAM PLAN DEFINITION

This plan shall provide a compilation of the facility requirements (identified in other sections) for the total program, including development, testing, manufacturing, checkout, and operations. Budgetary estimates shall be provided for the major/critical new facilities and/or major modifications. Options shall be described which will assist in determining whether these costs shall be contractor capital equipment or government facilities. Usage schedules shall be determined and any known conflicts shall be identified.

SPS POINT DESIGN PROGRAM REQUIREMENTS

- Solar Photovoltaic CR-2 Concept Definition
- Development facilities requirements
- Testing facilities requirements
- Manufacturing facilities requirements
- Checkout and operations facilities requirements
- Ground support requirements
- Requirements for Major/Critical New Facilities
- Financial and organizational concept financing
- Space segment
-Ground segment

RESOURCE CONSIDERATIONS

- Technical and Management Personnel
- Architectural and Engineering Capability
- Maintenance and Operational Workers
- Site and Facilities Availability
- Materials and Support Equipment
- Heavy Construction/Industrial Equipment

DISCUSSION

Major facilities will be required for manufacturing, testing, ground support, and warehousing-such as those related to power generation and transmission. The same will apply to major systems such as STS and HLLV which must include launch, recovery, and refurbishment facilities (Table 8-1).

Table 8.
SPS DDT\&E Program Planning Considerations (Phase C/D) Impact Sheet
Sheet 1 of 1

SPS DDT\&E PROGRAM.PLANNING SUMMARY
PLAN [TITLE
GROUND OPERATIONS—Ground Integration
PROGRAM PLAN DEFINITTON
This plan will cover integration of equipment and instruments into payloads. (Launch site integration of payloads into vehicle carriers will be covered under Space Operations, Plan 10.) An assessment of the manpower, facilities, equipment, and hardware to support these ground integration activities is required.

SPS POINT DESIGN PROGRAM REQUIREMENTS

- Solar Photovoltaic CR-2 Concept Definition
- Operational instruments and payload integration requirements
- Launch site/vehicle carrier definitions
- Supporting equipment and facility requirements
- Test and verification requirements

RESOURCE CONSIDERATIONS

- Technical and Management Personnel
- Supporting Hardware and Software
- Test Equipment and Facilities

DISCUSSION
Ground integration will have no major impact; however, early consideration should influence certain designs (i.e., waveguides) to assure optimum mix of payloads for STS. Table $9 a-1$ identifies ground assembly and integration considerations relative to its programatic impact.

Table 9a-1.
SPS DDT\&E Program Planning Considerations (Phase C/D) Impact Sheet
Sheet 1 of 1

SPS DDT\&E PROGRAM PLANNING SUMMARY	
PLAN 9b	TITLE GROUND OPERATIONS - Maintenance and Refurbishment
PROGRAM PLAN DEFINITION	
This plan will provide identification of expected maintenance and refurbish- ment requirements, assessment of how these activities would be accomplished and the resources required, i.e., manpower, facilities, and equipment.	
SPS POINT DESIGN PROGRAM REQUIREMENTS	
- Solar Photovoltaic CR-2 Concept Definition	
- Rectenna maintenance and refurbishment requirements	
- Shuttle-derived HLLV maintenance/refurbishment requirements	
- Launch site operations	

DISCUSSION

This plan will entail major effort primarily in the areas of rectenna and STS. The 5-GW rectenna site will, for example, contain 580,500 rectenna dipole panels (9.33 m high by 14.69 m long) covering an area of 78.5 million square meters.

Refurbishment techniques for STS should derive directly from the Shuttle. The STS M\&R plan area, while substantial will evolve over several years as the prototype ground station and launch/transportation system are being developed and brought up to operational status.

The requirements for inspection, cleaning, maintenance, and some replacement of failed panels will require a sizeable direct labor force and supporting equipment to maintain the operational antenna once installed (Table 9b-1).

Table $9 \mathrm{~b}-1$.
SPS DDT\&E Program Planning Considerations (Phase C/D) Impact Sheet
Sheet 1 of 1

SLAN
9C

Figure 9c-1. Launch Site Logistics

SPS DDT\&E PROGRAM PLANNING SUMMARY

PLAN	TITLE	
10	SPACE OPERATIONS	

PROGRAM PLAN DESCRIPTION

This plan shall address all of the activities associated with space/mission operations. Mission operations cover those activities from liftoff through on-line operations including ground operations, and shall include the requirements for manpower, facilities, and equipment to support the various ground and orbital on-site operations. (Actual procurement and training of manpower, construction of facilities, etc., will take place under the respective plans such as 9c (Logistics) and 8 (Facilities).

SPS POINT DESIGN PROGRAM REQUIREMENTS

- Solar Photovoltaic CR-2 Concept Definition
- Mission Planning Definitions (Plan 2)
- Transportation System Definitions
- Orbital Operations Definitions
- Space/Ground Operational Interfaces
- Operational Hardware/Software Requirements

RESOURCE CONSIDERATIONS

- Technical and Management Personnel
- Operational and Support Personnel
- Supporting Hardware and Software
- Materials/Equipment and Facilities

DISCUSSION

The conduct of large-scale space operations leading to routine construction operation and maintenance of space complexes such as SPS represents, perhaps, the major challenge in space for the remainder of this century. To fully exploit the potential that space provides will require devoting extensive resources and long-range planning to space programs of which SPS is the major one foreseen. The Space Operations Plan will require a breakdown into subplans which could include the following:

- Construction (Manufacturing)
- Space Base
- Logistics (including Life Support)
- Maintenance and Refurbishment
- Interstation/Interorbital Transportation
- Product Assurance (including Safety)
- Ground Support (i.e., operations, not logistics/facilities planning and operation, not construction)

SPS DDT\&E PROGRAM PLANNING SUMMARY

PLAN TITLE
SPACE OPERATIONS (Cont.)

Some of the above such as construction, manufacturing and product assurance are now incorporated as part of existing plans. Consideration might be given to including these unique facets of the Space Operations Plan.

Operational control will include both on-station operations, such as satellite construction, and control of transportation vehicle and construction bases. Planning considerations of space operations are shown in Table 10-1.

Table 10-1.
SPS DDT\&E Program Planning Considerations (Phase C/D) Impact Sheet
Sheet 1 of 2

PLAN NO. 10	TITLE: SPACE OPERATIONS	
WBS ELEMENT	IMPACT	$\begin{aligned} & \text { CAT- } \\ & \text { EGORY } \end{aligned}$
$\begin{aligned} & 1.1 \quad \begin{array}{l} \text { Satellite } \\ \text { System } \end{array} \\ & \text { 1.1.1.1, 1.1.2.1, } \\ & 1.1 .6 .1 \\ & \text { Structure } \end{aligned}$	Operations performed on the satellite as a power-generating and transmitting station. Does not include checkout of satellite proper or its subsystems. Manufacturing of the production satellites is based on orientation of beam machines in a complex, spatially controlled by a full cross-section template, as shown in Figure 10-1. The resulting manufacturing sequence provides for full construction in a total elapsed time and requires supporting several hundred men in orbit. The EOTV, on the other hand, will be assembled to permit wide flexibility in sequencing and rate of assembly. Considerable study will be required to identify an optimum approach to continuous manufacturing. This must be followed by development and demonstration on the ground and in space of equipment (i.e., beam machines) and operations (i.e., joining) applicable to the prototype. Figure 10-1. Overall Satellite Construction Scenario	A A

Table 10-1.
SPS DDT\&E Program Planning Considerations (Phase C/D) Impact Sheet
Sheet 2 of 2

SPS DDT\&E PROGRAM PLANNING SUMMARY

PLAN TITLE

LAUNCH OPERATIONS

PROGRAM PLAN DESCRIPTIONS

This plan shall address all the activities associated with launch operations Launch operations cover those activities from arrival of the payload at the launch site until liftoff. This shall include, but not be limited to, handling, inspection, assembly/integration/installation, checkout, calibration, etc.

SPS POINT DESIGN PROGRAM REQUIREMENTS

- Solar Photovoltaic Cr-2 Concept Definition
- Launch Site Payload Integration Definitions (Plan 9a)
- Transportation System Definitions
- Launch Site Facility Definition (Plan 8)
- Launch Site Support Equipment Utilization
- Test and Verification Definition (Plan 4)

RESOURCE CONSIDERATIONS

- Technical and Management Personnel
- Operations and Maintenance Personnel
- Support Equipment and Facilities
- Special/Unique Processing Equipment/Facilities

DISCUSSION

Launch operations will involve expanding the capability already developed under the basic Shuttle program. Because of the number and frequency of launches, this will require considerable expansion of current launch facilities. As with the Logistics'Plan, however, the major impact is to incorporate within the plan and its implementation the tremendous capability needed for multiple daily flights of HLLV's and provisions for rapid turnaround needed during post-IOC period. Important considerations are shown in Table ll-1.

Table 11-1.
SPS DDT\&E Program Planning Considerations (Phase C/D) Impact Sheet

SPS DDT\&E PROGRAM PLANNING SUMMARY		
PLAN	TITLE	
12	SPECIFICATION TREE	

PROGRAM PLAN DESCRIPTIONS

A specification tree shall be developed, beginning with the project level at the top.

SPS POINT DESIGN PROGRAM REQUIREMENTS

- Solar Photovoltaic CR-2 Concept Definition
- System and Subsystem Definitionis
- Make-or-Buy Decisions (Plan 1)
- Development and Procurement Definitions

RESOURCE CONSIDERATIONS

- Technical and Management Personnel
- Support Materials/Equipment and Facilities

DISCUSSION

This plan might be incorporated under Plan 1 or 2 and should be maintained as a natural part of the top-level planning function.

SPS DDT\&E PROGRAM PLANNING SUMMARY

PLAN	TITLE
13	

13 NATURAL RESOURCES ANALYSIS

PROGRAM PLAN DESCRIPTION

This plan assesses the degree and rate of consumption of critical materials, the degree of utilization of both material extraction and production plants, and the sensitivity of this consumption toward meeting the program objectives, major milestones, and the initial operational capability of the Satellite Power System (SPS). It expressly covers a natural resource analysis of only the first Rockwell SPS reference configuration.

SPS PROGRAM REQUIREMENTS

Program requirements and detail system definitions are based on the SPS reference configuration of a three trough planar array with an end mounted tension web antenna. Programmatic ground rules and guidelines are:

- Key dates for program planning:

$$
\begin{aligned}
& \text { 1981-1987 - Key Technology Program Activities } \\
& 1990 \text { - Decision Point for SPS Commercialization (Phase C/D) } \\
& 2000 \text { - IOC of First SPS Including Ground Receiving Station }
\end{aligned}
$$

- SPS build rate at two nominally 5 GW SPS's/year for 30 years to provide a 60 system capability by 2030.

The resource analysis considered these ground rules and SPS program schedules to identify the timing of system acquisitions and main operational elements. The following paragraphs summarize the analyses for use in identifying potential impact on U.S. productive capacity.

SPS PROGRAM ELEMENTS

Main elements of the SPS program include the satellite; space construction bases and support assembly equipment; space transportation and ground facilities; the ground receiving station; and management/integration activities. Principal resource requirements of the satellite, space construction, ground receiving station, and transportation elements are discussed in the following paragraphs.

Satellite System

The elements/systems of a space satellite are grouped into the categories of - energy conversion, power transmission/antenna, information management and control, attitude control and stationkeeping, and communications. Each of these items were analyzed and researched for its major resource requirement that focused on structures, concentrators, solar blankets, power distribution
and conditioning, and the klystron power module. A 25% weight growth factor was added to the basic system design weight statement for resource calculations. This is equivalent to the normal factor used in calculating the total mass to provide for contingency.

Structure. The primary structure which supports the solar array and antenna segment is composed of graphite impregnated composites. The total weight of the composites is $1.028 \times 10^{6} \mathrm{~kg}$ or $2,265,000 \mathrm{lb}$. Approximately 30% by weight would be graphite ($0.309 \times 10^{6} \mathrm{~kg} / 681,200 \mathrm{lb}$); 15% by weight would be glass fibers ($0.154 \times 10^{6} \mathrm{~kg} / 339,570 \mathrm{lb}$) ; and 55% resin ($0.565 \times 10^{6} \mathrm{~kg} / 1,246,000$ lb). The secondary structure/mechanisms of the solar arrays and antenna segments are considered mainly of aluminum and weighs $1.769 \times 10^{6} \mathrm{~kg}$ or $3,900,000$ Ib.

Concentrators. The concentrators (reflectors) consist of aluminum coated 0.5 mil Kapton - Type H sheet. The total weight is $1.296 \times 10^{6} \mathrm{~kg}$ or $2,857,000$ 1 b of which $1.283 \times 10^{6} \mathrm{~kg}$ or $2,828,000 \mathrm{lb}$ is Kapton and $.013 \times 10^{6 \mathrm{~g}} \mathrm{~kg}$ or $29,000 \mathrm{lb}$ is aluminum.

Solar Blanket. The solar blanket consists of a variety of materials as listed in Table $1 \overrightarrow{3}-1$. The total amounts required are factored from the work completed under Arthur D. Little contract with NASA (NAS9-15294).

Table 13-1. Solar Blanket Material Mass

MATERIAL	AMOUNT	REQUIRED
	$10^{6} \mathrm{~kg}$	$\times 10^{6} \mathrm{lb}$
ALUMINUM	0.008	0.018
GALLIUM	0.432	0.952
ARSENIC (99.999\%)	0.465	1.025
SELENIUM (00.999\%)	34 kg	751 b
ZINC (99.999\%)	11 kg	2416
ALUMINUM (99.999\%)	0.005	0.011
SILVER	0.172	0.379
GOLD	1.640	3.615
TIN	0.488	1.076
SAPPHIRE (AI $\left.{ }_{2} \mathrm{O}_{3}\right)$	2.700	5.952
GOPPER	0.476	1.049
TEELON	0.915	2.017
KAPTON	1.219	2.687
TOTAL	8.518	18.781

Power Distribution and Conditioning. This category includes the power conditioning equipment and conductors in both the solar array and the antenna. Also included are the power-transmitting slip rings. The total weight of power distribution and conditioning equipment, etc., amounts to $8.884 \times$ $10^{6} \mathrm{~kg}$, or $19.585 \times 10^{6} \mathrm{lb}$ and consists of the following materials (Table 13-2):

Table 13-2. PD\&C Materials

	AMOUNT REQUIRED	
MATERIAL	$\times 10^{6} \mathrm{~kg}$	$\times 10^{6} \mathrm{lb}$
ALUMINUM	6.824	15.044
STEEL	0.506	1.115
TITANIUM	0.028	0.062
COPPER	0.839	1.850
PLASTICS	0.681	1.501
SILVER	0.006	0.013
TOTAL	8.884	19.585

Power Modules (Klystrons). The weight of klystrons required on the SPS is estimated to be $5.206 \times 10^{6} \mathrm{~kg}$ or $11,477 \times 10^{6} \mathrm{lb}$. The materials required for their construction are listed in Table 13-3.

Table 13-3. Power Module Composition

MATERIAL	AMOUNTT REQUIRED	
	$\times 10^{6} \mathrm{~kg}$	$\times 10^{6} 1 \mathrm{~b}$
ALUMINUM	0.265	0.584
STEEL	0.690	1.521
COPPER	2.550	5.621
ALNICO-V	1.010	2.227
54% Fe	0.545	1.201
24% Co	0.242	0.533
14\% Ni	0.141	0.311
8\% AI	0.081	0.179
ALUMINUM OXIDE	0.531	1.171
GRAPHITE EPOXY	0.160	0.353
30\% GRAPHITE	0.048	0.106
15\% GLASS FIBER	0.024	0.053
55\% RESIN	0.088	0.194
TOTAL	5.206	11.477

Material Requirements for Main Elements of the Satellite System. A tabulation of satellite system material requirements in each of the study areas is presented in Table 13-4. The total weight of $26.700 \times 10^{6} \mathrm{~kg}$ or $58.873 \times 10^{6} 1 \mathrm{~b}$ is distributed over 22 materials as listed.

Ground Receiving Station (GRS) Definition

Key elements of the ground receiving station that might impact resource availability consists of the site and facilities requirements, the rectenna support structure, and the power collection system requirements. Other elements such as conversion stations, the grid interface and the operations requirements are basically identical to those required by conventional power
Table 13-4. Material Requirements for Main Satellite System Elements

\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline \multirow[b]{2}{*}{MATERIAL} \& \multirow[t]{2}{*}{STRUCTURE/ MECHANISMS \(\times 10^{6} \mathrm{KG}\)} \& \multirow[t]{2}{*}{\[
\begin{aligned}
\& \text { CONCEN- } \\
\& \text { TRATORS } \\
\& \times 10^{6} \mathrm{KG}
\end{aligned}
\]} \& \multirow[t]{2}{*}{\[
\begin{aligned}
\& \text { SOLAR } \\
\& \text { BLANKET } \\
\& \times 10^{6} \mathrm{KG}
\end{aligned}
\]} \& \multirow[t]{2}{*}{POWER
DISTR.
\(\&\) COND.
\(\mathrm{x} \quad 10^{6} \mathrm{KG}\)} \& \multirow[t]{2}{*}{POWER
MODULE
(KLYSTRONS)
\(\times 10^{6} \mathrm{KG}\)} \& \multicolumn{2}{|l|}{TOTAL WEIGHT} \\
\hline \& \& \& \& \& \& \[
\begin{array}{r}
\mathrm{KG} \\
\times \quad 10^{6} \\
\hline
\end{array}
\] \& \(\begin{array}{r}\text { LB } \\ \times \quad 10 \\ \hline\end{array}\) \\
\hline \begin{tabular}{l}
ALUMINUM \\
ALUMINUM OXIDE
\end{tabular} \& 1.769 \& 0.013 \& 0.013 \& 6.824 \& \[
\begin{aligned}
\& 0.346 \\
\& 0.531 \\
\& \hline
\end{aligned}
\] \& \[
\begin{aligned}
\& 8.965 \\
\& 0.531 \\
\& \hline
\end{aligned}
\] \& \[
\begin{array}{r}
19.768 \\
1.171 \\
\hline
\end{array}
\] \\
\hline ARSENIC COBALT \& \& \& 0.465 \& \& 0.242 \& \[
\begin{array}{r}
0.465 \\
0.242 \\
\hline
\end{array}
\] \& \[
\begin{array}{r}
1.025 \\
0.533 \\
\hline
\end{array}
\] \\
\hline \begin{tabular}{l}
COPPER \\
GALLIUM \\
GLASS FIBER GOLD \\
GRAPHITE \\
IRON
\end{tabular} \& \[
\begin{aligned}
\& 0.154 \\
\& 0.309
\end{aligned}
\] \& \& \[
\begin{aligned}
\& 0.476 \\
\& 0.432 \\
\& 1.640 \text { * }
\end{aligned}
\] \& 0.839 \& \[
\begin{aligned}
\& 2.550 \\
\& 0.024 \\
\& 0.048 \\
\& 0.545 \\
\& \hline
\end{aligned}
\] \& \[
\begin{aligned}
\& 3.865 \\
\& 0.432 \\
\& 0.178 \\
\& 1.640 \\
\& 0.357 \\
\& 0.545 \\
\& \hline
\end{aligned}
\] \& \[
\begin{aligned}
\& 8.520 \\
\& 0.952 \\
\& 0.392 \\
\& 3.615 \\
\& 0.787 \\
\& 1.201 \\
\& \hline
\end{aligned}
\] \\
\hline \begin{tabular}{l}
KAPTON \\
NICKEL \\
PLASTIC \\
RESIN \\
SAPPHIRE \\
SELENIUM \\
SILVER \\
STEEL \\
TEFLON \\
TIN \\
TITANIUM \\
ZINC
\end{tabular} \& 0.565 \& 1.283 \& \[
\begin{gathered}
1.219 \\
\\
\\
2.700 \\
(34 \mathrm{KG}) \\
0.172 \\
\\
0.915 \\
0.488 \\
(11 \mathrm{KG}) \\
\hline
\end{gathered}
\] \& \[
\begin{aligned}
\& 0.681 \\
\& \\
\& 0.006 \\
\& 0.506 \\
\& 0.028
\end{aligned}
\] \& 0.141
0.088

0.690 \& | 2.502 |
| :--- |
| 0.141 |
| 0.681 |
| 0.653 |
| 2.700 |
| $(34 \mathrm{KG})$ |
| 0.178 |
| 1.196 |
| 0.915 |
| 0.488 |
| 0.028 |
| $(11 \mathrm{KG})$ | \& \[

$$
\begin{gathered}
5.517 \\
0.311 \\
1.501 \\
1.440 \\
5.952 \\
(75 \mathrm{LB}) \\
0.392 \\
2.637 \\
2.017 \\
1.076 \\
0.062 \\
(24 \mathrm{LB}) \\
\hline
\end{gathered}
$$
\]

\hline SUBTOTAL \& 2.797 \& 1.296 \& 8.518 \& 8.884 \& 5.205 \& 26.700 \& 58.873

\hline \multicolumn{6}{|l|}{OTHER (ACS \& THERMAL)} \& 6.318 \& 13.931

\hline \multicolumn{6}{|r|}{TOTAL WEIGHT} \& 33.018 \& 72.804

\hline
\end{tabular}

*Not economically feasible-Assume the use of an aluminum base material.
generating systems and are not anticipated to impose significant resource rerequirements. Likewise, the control system, while unique to the GRS concept, is not anticipated to require either unusual types or large quantities of natural resources.

Site and Facilities. The ground receiving station will require an area of approximately 35,000 acres. The rectenna field will occupy approximately 25,000 acres with a surrounding buffer zone of 10,000 acres. The land will need to be cleared and leveled and a rainfall run-off system would need to be constructed. Several alternative layouts were examined, however, the amount of excavation and concrete was found to be relatively insensitive to the layout alternatives. Concrete footings (2 parallel rows) would need to be poured for each row of antenna panels. Concrete requirements for GRS rectenna panel footings and for the water channels were translated into the constituent materials (see Table 13-5).

Table 13-5. Cement/Aggregate Requirements

CEMENT	949,000 TONS
SAND	$2,827,000$
ROCK (APPROX. $\left.1 \prime-1-1 / 2^{\prime \prime}\right)$	$3,695,000$
WATER	606,000
REINFORCING ROD	$8,077,000$ TONS

It was assumed that the access road between panels would consist of a 6 inch deep layer of gravel. The gravel requirements for the access roads would be 9,791,000 yd^{3} or approximately $13,707,000$ tons. Requirements associated with construction of 10 miles of access roads and 23 miles of perimeter roads plus 20 miles of access railroad, and 25 miles of perimeter railroad were not considered to impose abnormal requirements on natural resources or production capacities.

Rectenna Support Structure. The rectenna support structure consists of steel hat sections, I beams, tube braces, fittings and hardware along with miscellaneous items. The total weight of steel required for rectenna support was calculated to be 1666.7 kg or 3674 lb per panel, or a total of 967.5×10^{6} kg or $2132.9 \times 10^{6} \mathrm{lb}$ for the 580,500 panels in the rectenna array.

Power Collection. The power collection occurs in the panel array elements mounted on the rectenna panels. The elements consist of three 0.5" layers of a dielectric (plastic compound) that separates four layers of 0.0039 inches of copper, clad to 0.001 inches of Mylar. Interspersed within each panel are 735 diodes, or a total of 426.67×10^{6} diodes in the total array of 580,500 panels. The one ounce diodes consist of 44% tungsten, 40% copper, 15% gallium arsenide and 1% gold and other exotic materials. Consequently, the total material requirements for the power collection portion of a single rectenna are itemized in Table 13-6. Miscellaneous materials such as copper wiring, J-boxes, etc., were not considered to severely impact either material availability or production capacity.

Table 13-6. Diode Materials per Rectenna

MATERIAL	AMOUNT REQUIRED
	$\mathrm{kg} \times 10^{6}$
PLASTIC DIELECTRIC	169.96
MYLAR	11.32
COPPER (COATED OR MYLAR)	46.13
DIODES	
TUNGSTEN	
COPPER	5.32 .68
GALLIUM ARSENIDE	4.84
GOLD/EXOTICS	1.81

Space Transportation System Definition

The SPS program will require six new vehicle or growth developments. The listing of vehicles needed to complete the first satellite for an initial operating capability is shown in Table l3-7.

Table 13-7. SPS Fleet/Operations for First Satellite

	NO. OF VEHICLES	NO. OF FLTS.
PERSONNEL LAUNCH VEHICLE (PLV) SHUTTLE GROWTH	2	60
HEAVY LIFT LAUNCH VEHICLE (HLLV)	5	234
PERSONAL ORBITAL TRAIISFER VEHICLE (POTV)	4	45
INTERORBITAL TRANSFER VEHICLE (IOTV)	4	408
CARGO ORBITAL TRANSFER VEHICLE-ELECTRICAL (EOTV)	6	7
PERSONAL MODULE (PM - USED WITH POTV)	4	60

In order to be available when required, the development times for the six vehicles would overlap. The vehicles will require large quantities of propellants and possibly the construction of new propellant production facilities. The total annual propellant quantity estimated to be required in support of the construction of the first SPS is shown in Table 13-8. The actual quantities required would be somewhat larger than the amounts shown because losses due to boil-off, evaporation, etc., have not been included.

SPS PROGRAMMATIC DEFINITION

Quantities of natural resources required for construction of the SPS, while significant in themselves, may nevertheless be misleading because it is the rate of resource requirements that governs their impact. The elements required for the satellite system (i.e., transportation systems, bases, etc.) will be constructed over a number of years. Thus, the resource requirements

Table 13-8. Propellant Requirements for First Satellite

	$\times 10^{6} \mathrm{~kg}$			
VEHICLE	LOX	LH 2	RP	ARGON
PLV	69.960	11.640		
HLLV	990.288	80.028	201.006	
POTV	2.526	0.421		
IOTV	0.105	0.018		4.690
EOTV				4.690
TOTAL	1062.879	92.107	201.006	
MILLIONS OF LB	2343.117	203.050	443.118	10.339

can be spread over a commensurate period. On the other hand, the ground receiving station is scheduled for IOC approximately four to five years after start of site preparation on the first GRS. Examination of the domestic availability of many of the resources required by the SPS can readily result in the identification of those resource requirements that would not present substantial problems. Similarly, those resource requirements that might tax the current productive capacity of the U.S. can at least be flagged for more detailed analyses in light of the schedules of GRS requirements as shown in Figure 13-1.

RESOURCE REQUIREMENTS

Basic resources considered were: 1) material requirements (i.e., mineral, metal, plastic, etc.); 2) production capacity for processing the materials; and 3) manpower - principal areas of skilled manpower essential for the development and implementation of main elements that comprise the SPS program.

Materials

In assessing the material resources, primary emphasis is placed on the indigenous U.S. supply. However, in some cases such as bauxite which is the basic source of aluminum, the annual U.S. imports from diverse sources are judged to be a more accurate measure of aluminum availability than U.S. bauxite production alone. In other cases, the SPS mineral requirements are assessed in terms of their impact on U.S. government stockpiles.

Production Capacity

The production capacity is assessed in terms of the SPS demand versus the U.S. ability to readily expand its productive capacity to meet new requirements. A major fmpediment to ready expansion centers is based on the availability of relatively low cost energy sources. New industry may have difficulty in finding readily available locations with low cost energy sources. This is particularly true for production of energy intensive materials such as aluminum or sapphire.

Manpower

Requirements for skilled manpower can impose constraints on major developments based on the magnitude of $S P S$ and its required disciplines. Two categories of important manpower considerations have been recognized. The first is the engineering manpower necessary for the concurrent development of five new major transportation systems in addition to the simultaneous development of the space bases and the satellite system. The second potential manpower constraint stems from the radiation exposure limitations on the satellite system construction crew. Two crews of 317 each will be required to man the SCB during construction of the first SPS. A work cycle of 3 months in orbit and 6 months on earth is planned for the construction period. This requires 3 full construction crews, plus a complete crew replacement every 3 years without attrition on the basis that five 3-month tours in orbit will result in a maximum lifetime radiation exposure. Consequently, hundreds of satellite construction workers will need to be recruited and trained continuously.

RESOURCE CONSIDERATIONS

Manpower and material requirements imposed by the development and construction of the SPS were identified and analyzed in terms of appropriate manpower and material availability within the U.S. Several potential problem areas were identified.

TECHIICAL AND MANAGEMENT PERSONNEL

Development of eight major systems are required for SPS transportation and space base requirements. These are:

1. Personnel Launch Vehicle/Shuttle Growth Vehicle
2. Heavy Lift Launch Vehicle (VTO/HL)
3. Personnel Orbital Transfer Vehicle (POTV)
4. Interorbital Transfer Vehicle (IOTV)
5. Cargo Orbital Transfer Vehicle (COTV)
6. Space Construction Base (SCB)
7. Low Earth Orbit Base
8. Satellite O\&M Base

Three major bases are required in the development and implementation of the SPS, namely the Space Construction Base (SCB), a Low Earth Orbit (LEO) Base and the Satellite O\&M Base. The SCB, located in geosynchronous orbit, contains 33 tribeam fabricators (198 beam machines) as well as solar blanket and reflector dispensing areas. It also contains a central and auxiliary
habitats, landing area, and warehouse facilities. All of the basic elements of the satellite are constructed through the use of the SCB. The LEO Base is basically a supporting facility for staging cargo and propellants for transfer to GEO. The O\&M Base is primarily the maintenance facility for the operational satellite. It contains maintenance supplies as well as a habitat for the maintenance/operations personnel.

Each of these developments constitutes a major program, requiring thousands of skilled engineers. The development schedules for most of these programs will overlap. In view of the current tight supply of skilled aerospace engineers, the unavailability of technical personnel may constitute a major impediment to the establishment of an SPS in accord with the planned schedules.

Another manpower consideration is the manning level for satellite construction. Required crew rotations to support construction of 60 satellites total 120 , which results in 24 crews or 14,400 men. Applying a 20% attrition factor (resignations, etc.) raises this figure to 17,280. Similarly, 3,660 maintenance crew rotations at 30 men per crew and including attrition generate a requirement for 26,352 men. An additional 691 men are needed to operate one LEO facility for 30 years.

The need to recruit and train personnel and to develop the required facilities and materials for the programs/courses represent an important aspect of this overall activity.

MATERIALS

A review of materials required for construction of the satellite system and ground receiving station identifies several potential problem areas of material availability. Table 13-9 summarizes eight materials that can pose limitations on SPS requirements. Considerations on material availability are presented in the following paragraphs.

Table 13-9. Sigmificant Satellite and GRS Resource Needs

1. COBALT:	533,000 lb REQUIRED. IMPORTS FROM PRIMARY SOURCE - ZAIRE - SUSCEPTIBLE TO INTERRUPTION.
2. GALLIUM:	2,878,000 16 REQUIRED
3. GOLD	3,750,000 lb REQUIRED
4. KAPTON:	5,517,000 16 REQUIRED
5. SAPPHIRE:	5,952,000 16 REQUIRED
6. SILVER:	392,000 16 REQUIRED
7. TEFLON:	2,017,000 ib REQUIRED
8. TUNGSTEN:	11,730,000 16 REQUIRED

DISCUSSION

COBALT

Klystron magnets are assumed to be made of AlNico-V which consists of 24% cobalt. This translates into a cobalt requirement of $533,000 \mathrm{lb}$. Over 60% of world cobalt production comes from Zaire, principally from Shaba Province. Military conflicts in that region have significantly reduced cobalt production. In 1977 , the U.S. imported 17.7 million 1 b of cobalt. Another 624,000 lb were reclaimed from recycled alloys. The government stockpiles contain approximately 40 million $1 b$ of cobalt. There has been no domestic mining of cobalt since 1970. If the price increased from the current $\$ 20$ per lb to approximately $\$ 60$ to $\$ 80$ per 1 b , then it is expected that domestic production would be quite likely (in limited quantities). Inasmuch as cobalt is in short supply and the SPS would require approximately 3% of the total annual import or 1.33% of the stockpiled amount ($1 f 40$ million pounds still remain), cobalt availability should be monitored to track its possible impact on the SPS program.

GALLIUM

Approximately $2,878,000 \mathrm{lb}$ of gallium are required by the SPS program. Gallium is obtained as a by-product of the processing of bauxite into alumina. Sufficient gallium is extracted to meet the demand. The current potential supply of gallium from domestically processed bauxite is over 2 million lb annually. By projecting the anticipated growth of the U.S. aluminum industry to the mid-1990's, the domestically processed bauxite would yield over 5 million 1 b of gallium annually. However, at present, it appears that the SPS gallium requirements will support program requirements and greater production/recovery is projected for the 1990 gallium production capacity.

GOLD

The $3,750,0001 b$ of gold required exceeds recent U.S. annual gold production. Approximately 45% of the gold produced in the U.S. is obtained as a by-product from other metal production, primarily copper. In 1977, approximately $75,000 \mathrm{lb}$ of gold were produced domestically, at a value of $\$ 148$ per troy ounce. With gold currently selling at about $\$ 240$ per troy ounce, some increased production can be expected, but far short of the SPS requirements. The U.S. Treasury stockpile currently contains approximately 18.5 million 1 b of gold. Thus, the SPS requirement would constitute approximately 20% of our gold reserve. A substitute material will likely need to be developed to replace the gold requirements of the solar blanket.

KAPTON (POLYAMIDE)

The current U.S. production of polyamides is estimated to be between 4.0 and 5.0 million lb and expanding. In order to supply the $5,517,000 \mathrm{lb}$ required by the $S P S$, the production capacity would need to be doubled or stockpiles built up. This could readily be accomplished given sufficient lead time.

SAPPHIRE

The aluminum oxide necessary to produce $5,952,000 \mathrm{lb}$ of sapphire ribbon is readily available. The sapphire ribbon availability problem stems primarily from the technology requirements. The crystal growth is a relatively slow process. Considerable research is being performed to resolve the problems associated with sapphire ribbon production. Sapphire ribbon production associated with sapphire ribbon production. Sapphire ribbon production advances should be monitored so that sufficient production facilities will be available to meet the demand.

SILVER

In 1977, the U.S. production of silver amounted to $2,617,000 \mathrm{lb}$. The $392,000 \mathrm{lb}$ of silver required by the SPS thus constitutes 15% of the annual U.S. production. Silver usage in the United States amounted to approximately 11.0 million 1 b in 1978. The U.S. goverment holds a reserve of silver in the strategic stockpile on the order of $8,800,000 \mathrm{lb}$. The SPS requirement constitutes only 4.5% of the stockpiled amount. Approximately 70% of the silver produced in the U.S. is a by-product or co-product of other metal production -- chiefly copper, lead, and zinc. The 40% increase in the value of silver during the past year will serve to stimulate additional production, both domestically and world-wide.

TEFLON

The SPS requirement for Teflon was established at $2,017,000 \mathrm{lb}$ or 34% of the 6 million pounds estimated to have been produced in 1977. Productive capacity is readily expandable, given sufficient lead time.

TUNGSTEN

The $11,730,000 \mathrm{lb}$ of tungsten required by the SPS constitutes approximately 14% of the annual world production, or 50% more than the total U.S. production of tungsten in 1974. The total annual U.S. consumption of tungsten is on the order of 15 million pounds. U.S. Government stockpiles contain about 110 million pounds of tungsten or 9.4 times the SPS requirement. Consequently, the tungsten requirement of the SPS could present a major problem. Use of alternative materials for the tungsten in the panel diodes should be investigated.

SUMMARY

The above analyses have been based on the construction of one SPS. A construction rate of two SPS per year, for even several years, could substantially compound the material resources availability problems described. A list of data sources used in this analysis are presented in Table 13-10.

Table 13-10. Key Data References

BATTELLE—PACIFIC NORTHWEST LABS DOCUMENTATION

MINERAL FACTS AND PROBLEMS, 1975 EDITION, U.S. DEPARTMENT OF INTERIOR

SURVEY OF AVAILABILITY AND ECONOMICAL EXTRACTABILITY OF GALLIUM FROM EARTH RESOURCES, ALUMINUM COMPANY OF AMERICA, 1 OCTOBER 1976

STATISTICAL ABSTRACT OF THE UNITED STATES 1976, U.S. DEPARTMENT OF COMMERCE

THE WORLD ALMANAC AND BOOK OF FACTS, 1979, GROSSET AND DUNLAP
STATISTICAL ABSTRACTS OF THE UNITED STATES - 1976
MINERAL FACTS AND PROBLEMS (1975), U.S. DEPARTMENT OF INTERIOR
UNITED STATES MINERAL RESOURCES, U.S. DEPARTMENT OF INTERIOR (1973)
CHEMICAL INFORMATION SERVICE S.R.I.
SOCIETY OF THE PLASTICS INDUSTRY
TYCO LABORATORIES, INC. - SAPHIKON DIVISION
UNION CARBIDE CORP. - ELECTRONICS DIVISION
UCLA REFERENCE LIBRARY
CHEMICAL ENGINEERING
LIBRARY OF CONGRESS
AVIATION WEEK AND SPACE TECHNOLOGY
CHEMPLAST INC.

ALUMINUM COMPANY OF AMERICA REPORT
MODERN PLASTICS

4.0 CONCLUSIONS/RECOMMENDATIONS

This section presents summary comments on the methods and rationale followed in arriving at the results documented in this report. Suggestions are also provided in those areas where further analysis or evaluation will enhance SPS cost and programmatic definitions.

4.1 SPS COST ESTIMATES

\checkmark The costing approach in this study considered an SPS option of 60 units with an IOC in the year 2000 and the full 300-GW capability to become operational at the rate of two SPS's or 10 GW per year.
\checkmark Cost estimates developed in this report are the extended products of a Rockwell cost data base uniquely formed for the SPS program. Main elements are categorized into (1) satellite (using MSFC and Rockwell CER's), (2) space construction and assembly (Rockwell CER's with space station backup), (3) transportation (Space Shuttle, company-sponsored studies, Boeing cost data), and (4) the ground receiving station (a grass roots analysis). This same data base was expanded to incorporate cost and programmatic information from discussions with-business and industry leaders. These discussions were supplemented by the use of selected literature and periodicals to obtain supporting data. Business/ industry and literature sources are listed in Table 4.1-1.
\checkmark The Rockwell cost model and computer program can be used to calculate the costs for differing options in conjunction with an appropriate technical definition, traffic model projection, and operations scenario.
\checkmark A special factor was used when calculating the development cost of a system/subsystem and was based on the overall program scenario of that particular system. For example, crew and work support modules of the LEO, SCB, or satellite operations and maintenance base are of a common design, although required at differing times in accordance with the program schedule. Appropriately then, development factors were used to project costs at a 100 -percent factor for the first module-whereas a lesser factor was used for subsequent requirements of the same modules to cover any revised development or integration need when being used in other applications. This represents a realistic programmatic approach to costing. Other areas should be studied for the use of this same logic.
\checkmark TFU costs projected for an SPS operational capability of the ground and space segments include estimates for initial space transportation fleets, satellite construction, operations, and the ground receiving station plus electric utility grid interface and supporting facilities. As such, all cost estimates for the TFU include the full cost of systems, equipment, facilities, and machinery that may have a service life capable of building more than one SPS. Therefore, the TFU cost represents a level of investment that can be expected when building a single-unit SPS option.

Table 4.1-1. Business/Industry and Literature Sources

Organization	Purpose
'American Bridge-A division of U.S. Steel Riverside Cement-A division of American Cement Corporation; and C. S. Johnson Co. Townsend \& Bottum, Inc., (construction manager) 10-MW Solar Plant-Barstown, CA Southern California Edison Modern Alloys, Inc.; and Miller Formless Co. Caterpillar; International Harvester; and JETCO, Inc.	To develop steel requirements, costs, and operations definition for procurement and installation of rectenna support structure. Provide consultation on cement/concrete specification operational methods; processing/handling equipment. Discuss site preparation, construction operations/ sequencing, plus activation requirements. To discuss de/ac power distribution and conversion requirements and obtain cost estimates on installation of lines/towers. To discuss use and application of equipment/crew for continuous concrete pour of rectenna support structure footing. Obtain prices on earth moving, grading, and trenching equipment
Literature Sources	
The Richardson Rapid System 1978-1979 Edition Engineering News Record-1977, a weekly McGraw-Hill publication National Construction Estimating Guide (NCE)	Construction labor and operations prices Cement, aggregate and labor prices Construction operations

\checkmark SPS investment (ICI) costs in this study represent the average of a 60 -unit option covering the cost of production, assembly, installation, transportation, and testing needed to produce individual satellites, transportation systems, and ground receiving stations-including required support. SPS operations costs consist of the effort required to operate and maintain the SPS program (including replacement capital items) over its operational lifetime of 30 years.
\checkmark Further study is required to identify and analyze SPS cost drivers. This should be an integrated process where technical and program development activities confirm and optimize SPS designs, or technical approaches, for cost-effective results.
\checkmark Several ground receiving station issues require further design definition. These include rectenna lightning protection, support structure optimization, and the rectenna drainage approach. In addition, the space transportation (HLLV) concept needs further definition.

4.2 ROCKWELL COST MODEL

\checkmark The Rockwell SPS cost model was expanded from its earlier version (Exhibit A / B) to (1) provide for newly added input requirements, (2) handle these new requirements when making cost calculations, and (3) provide a more versatile model. There are now six basic input categories: (1) line item name and units; (2) estimating relationships (CDCER, CICER); (3) design parameters such as CF, DF, and TF ; (4) programmatic definitions (Z_{1} to Z_{5}); (5) summing information; and (6) the addition of a "comments" section on each cost sheet to document unique technical or estimating characteristics of the line item. Although not required at this time, it is possible to expand the model with an input for use when calculating the complexity of development cost estimates (CFD) as compared with the complexity factor (CFI) as may be needed to calculate investment costs.
\checkmark Changes to the cost model and computer program have simplified the approach when making inputs to the computer. Previously, fixed locations required careful input preparations on a line item by line item basis. This approach was revised to provide the computer with a simplified input procedure and table that will automatically accept and organize the input by WBS hierarchy. This change has resulted in a more flexible computer program and has significantly reduced the time previously required to organize and prepare input sheets.
\checkmark The addition of a CTB (cost to build) capability in the cost model provides individual system/subsystem costs, with learning, over the total quantity to be produced under the option. This base figure is then used to calculate the average unit cost and the replacement capital cost per SPS if attrition prevails. An additional feature of the program categorizes the cost to construct a satellite option (Z_{4}) and that needed to support $0 \& M$ requirements of a satellite option (Z_{5}) when making calculations affecting each area.

4.3 RESOURCES ANALYSIS

A review of materials required for the construction of the satellite system and ground receiving station identified areas for potential investigation of material availability. These requirements should be more closely analyzed in conjunction with the characteristics of design and potential system improvements. The solar blankets and RF devices are typical examples of resource sensitive items.

4.4 SPS PROGRAMMATICS

Ground-based experimental research and technology advancement programs require further definition as they relate to the Rockwell SPS reference configuration. An overall view of critical technology items should result in a technical definition, interface requirements, expected results, and an integrated schedule/network of the steps required for ultimate resolution. These "planning packages" of data should incorporate NASA decision points and coincide with NASA budget inputs.

APPENDIX A
 SATELLITE POWER SYSTEM WORK BREAKDOWN STRUCTURE DICTIONARY

SOLAR PHOTOVOLTAIC GaAIAs
CONCENTRATION RATIO (CR) - 2
THREE-TROUGH COPLANAR
END-MOUNTED ANTENNA

APPENDIX A SATELLITE POWER SYSTEM WORK BREAKDOWN STRUCTURE DICTIONARY

INTRODUCTION

Generally a work breakdown structure (WBS) is thought to be a productoriented family tree composed of all the hardware, software, services, and other tasks necessary to define the program. It offers visual display, relates project elements, and defines the work to be accomplished. The WBS is then a tool for facilitating communications and understanding a complex program by dividing this program into less complex, more manageable subdivisions or elements. It is most desirable that the WBS provide a uniform basis for management and control, cost estimating, budgeting and reporting, scheduling activities, organizational structuring, specification tree generation, weight allocation and control, procurement and contracting activities, and serve as a tool for program evaluation. Therefore, the WBS developed and defined herein is primarily tailored to the unique cost, economic, and programmatic requirements of the Satellite Power System (SPS). It is designed to allow a standard and logical format for estimating SPS project cost, while at the same time permitting cost and economic comparisons of SPS to alternate and competitive candidates for producing power.

WBS MATRIX

The total WBS matrix shown in Figure A-1 is a three-dimensional structure that shows the interrelationship of (1) the hardware and activities dimension, (2) the accounts and phases dimension, and (3) the elements of cost dimension. This latter dimension is not further developed at this time, but is provided to show the overall expansion capability built into the WBS matrix. This dimension will become more important in later years when the SPS program approaches a Phase C/D start and is defined to the extent that the elements of cost can be planned and estimated with realism.

There is, of course, the fourth dimension of time which cannot be graphically shown but must be considered also. Each entry on the other three dimensions varies with time, and it is necessary to know these cost values by year for budget planning and approval, and to establish cost streams for discounting purposes.

While a multiple-dimensional approach may at first appear unduly complex, it actually provides benefits that far outweigh any such concern. This structural interrelationship provides the capability to view and analyze the SPS from a number of different financial and management aspects. Costs may be summed by hardware groupings, phases, functions, etc. The WBS may be used in a number of threedimensional, two-dimensional, or single-listing format applications.

ACCOUNTS AND PHASES DIMENSION

The accounts and phases dimension differs somewhat from the typical breakout for government aerospace programs in that it has been developed to also accommodate the financial involvement of the private sector, hence, the inclusion of the breakout of financial divisions or "accounts." Distinctions have been made between capital expenditures, which are recoverable by annual depreciation charges and are not deductible as expenses, and operation and maintenance charges against income, which are deductible as expenses in the year incurred.

To accomplish this objective, four financial accounts have been established. Design, development, test, and evaluation (DDT\&E) includes the one-time costs associated with the development of components, subsystems, and systems required for the SPS project. Initial capital investment includes the costs associated with initial procurement and emplacement of the SPS plant and equipment. Replacement capital investment includes the costs associated with capital asset replacements over the operating life of the SPS (e.g., subsystem spare parts, overhauls, etc.). Operations and maintenance ($O \& M$) includes the costs of expendables (e.g., propellants for the propulsion subsystem thrusters), minor maintenance, repair crews, etc. The interrelationship of the financial accounts to the normal aerospace program phases of DDT\&E, investment, and operations are also shown in this dimension of the WBS matrix to permit traceability to these more commonly recognized therms.

HARDWARE AND ACTIVITIES WBS DIMENSION

The hardware and activities WBS dimension contains hardware elements of the satellite system and ground system subdivided into subsystems and assemblies. Inherent within this dimension is the capability for further subdivision to lower levels of detail limited only by the realism of the requirements.

Required support hardware, possibly developed under the sponsorship of other programs, is also displayed here for completeness and includes such items as space construction and support equipment and transportation vehicles. Some or all of these support elements may be developed for multiple project applications. A determination will be made later as to how much, if any, of the development costs of these support elements should be charged against the SPS program.

Each of the elements of support hardware is broken out only at a summary level within the SPS WBS. However, they each have their own detailed WBS which could be displayed in depth under the SPS WBS if required.

Finally, the hardware and activities WBS dimension also includes the necessary activities of management, integration, operations, etc., required to accomplish the overall SPS missions.

DICTIONARY ORGANIZATION

The SPS dictionary is divided into:
(1) A graphic display of the three-dimensional WBS matrix (Figure A-1)
(2) The definitions of terms of the accounts and phases dimension (pages A-5 and A-6)
(3) The definitions of terms of the WBS hardware and activities dimension (pages A-7 through A-16)

A systematic numerical coding system coordinates the rows of the hardware and activities dimension to the columns of the accounts and phases dimension such that all matrix locations are identifiable by WBS number.

Since each matrix position corresponds to one particular row of the hardware and activities dimension and also to one particular column of the accounts and phases dimension, a complete definition of any matrix position is constructed by combining the definitions from the two applicable dimensions. That is, to avoid repetition, definitions are provided only once for each hardware and activities dimension row and only once for each accounts and phases dimension column, and a complete definition for any matrix position is a combination of these two definitions.

DEFINITIONS OF ACCOUNTS AND PHASES

1100-DESIGN, DEVELOPMENT, TEST, AND EVALUATION (DDT\&E)

The DDT\&E account/phase consists of the one-time costs associated with designing, developing, testing, and evaluating the components, subsystems, and systems required for the SPS project. It includes the development engineering, testing, and support necessary to translate a performance specification into a design. It encompasses the preparation of detailed drawings for system hardware fabrication, system integration, and (depending on the system, subsystem, or component) structural, environmental, and other required tests. It includes all ground tests, sortie tests, subscale and full-scale SPS tests, and all hardware fabrication required for such tests. Also included are the analysis of data and whatever redesign and retest activities are necessary to meet specifications. It also includes ground support equipment, special test equipment, and other program-peculiar costs not associated with repetitive production. All SPS related support systems such as transportation, space construction base, and assembly/support equipment necessary to accomplish the DDT\&E phase are included at present for completeness. It may later be determined that some of these support systems will exist with or without SPS; therefore, they may not be chargeable to the SPS project.

1200-INITIAL CAPITAL INVESTMENT

The initial capital investment account is a summation of those plant and equipment expenditures made for the initial procurement and installation of each full-scale SPS. That is, this account collects the production, assembly, installation, transportation, test, etc., costs of each individual satellite and ground station that is associated with, and necessary to, bringing the power plant online (in government aerospace terminology, this corresponds to costs in the investment phase). Examples of costs collected in this account are the procurement cost and launch cost of the satellite system itself, the procurement cost of the ground system (including installation), and all other necessary costs to achieve this end such as those attributable to space stations, launch vehicle fleets, etc. Also included is pro rata share of such functional costs as program management, SE\&I, etc., related to the foregoing systems. Only costs incurred after the end of the DDT\&E phase and prior to the initial operational capability (IOC) of each SPS are collected in this account.

1300—REPLACEMENT CAPITAL INVESTMENT

The replacement capital investment account is a summation of those plant and equipment expenditures made for capital asset replacement and major overhauls that are expected to last more than one year and result in an improvement to the operating system. Examples of costs collected in this account are the costs of spares, their installation and associated launch costs or ground transportation costs, permanent improvements in the system such as rotary joint replacement, installation of improved design satellite control equipment, etc.,
as well as pro rata shares of functional costs. These expenditures begin at the IOC and continue over the life of each SPS.

1400-OPERATIONS AND MAINTENANCE (O\&M)
The O\&M account is a summation of those expenditures incurred in the day-to-day operations beginning with the IOC and continuing over the life of each SPS. Examples of costs collected in this account are wages of operations and maintenance personnel, minor repairs and adjustments to systems to maintain an ordinarily efficient operating condition, expendables and consumables, launch costs for transfer of on-orbit personnel and resupply of expendables and consumables, etc.

DEFINITIONS OF HARDWARE AND ACTIVITIES

1.0 SATELLITE POWER SYSTEM PROGRAM

The program includes all the elements of hardware, software, and activities required for the design, development, production, assembly, transportation, operations, and maintenance of the SPS program systems. Included are the satellite and ground receiving station systems, as well as the necessary support systems such as space construction and sup- $亡$ and transportation.

1.1 SATELLITE

This element includes the hardware and software located in geosynchronous orbit (GEO) for the collection of solar energy, conversion to electrical energy, and transmission of electrical energy in microwave form to earth.

1.1.1 ENERGY CONVERSION

This element includes the components required to collect solar energy, convert the solar energy to electrical energy, condition the electrical energy, and transport it to the interface wubsystem (WBS No. 1.1.6).

1.1.1.1 STRUCTURE

This element includes all necessary members to support the concentrators, solar blankets, and other energy conversion subsystem hardware. It includes structural beams, beam couplers, cables, tensioning devices, and secondary structures which are required as an interface between the primary structure and the mounting attach points of components, assemblies, and subsystems.

1.1.1.2 CONCENTRATORS

This element concentrates the solar energy onto the solar blanket to increase the energy density on the conversion device. It includes the reflective material and any integral attach points required for mounting. Excluded are tools and support equipment required for deployment and tensioning.

1.1.1.3 SOLAR BLANKET

This element converts solar energy to electrical energy and provides power to the power distribution and conditioning buses. It includes the photovoltaic conversion cells, coverplates, substrate, electrical interconnects, and any integral attach points required for mounting. Excluded are tools and support equipment required for deployment and tensioning.

1.1.1.4 POWER DISTRIBUTION AND CONDITIONING

This element includes the power conductors, switch gear, and conditioning equipment and slip rings required to transfer power from the solar blanket to the interface subsystem power distribution elements. Also included are electrical cables and harnesses required to distribute power to equipment located on
the energy conversion structure, plus batteries or storage medium for information system and attitude control. Excluded are data buses which are included in the information management and control subsystem (WBS No. 1.1.3).

1.1.1.5 THERMAL CONTROL

This element includes any component used to modify the temperature of the energy conversion subsystem components. It includes -oldplates, heat transfer, and radiator devices, as well as insulation, thermal control coatings, and finishes. Excluded are paints or finishes applied to components during their manufacturing sequence.

1.1.1.6 MAINTENANCE

This element provides for in-place repair or replacement of components and includes work stations, tracks, access ways, and in situ repair equipment.

1.1.2 POWER TRANSMISSION

This element receives dc electrical power from the interface subsystem, conditions the power, converts it to microwave energy, and radiates the energy to the ground receiving station. Included are power distributions from the interface subsystem, dc-to-RF. conversion devices, control and monitoring equipment, and antenna radiating elements.

1.1.2.1 STRUCTURE

This element includes all members necessary to support the transmitter subarrays and other power transmission subsystem hardware. It includes structural beams, beam couplers, cables, tensioning devices, and secondary structures.

1.1.2.2 TRANSMITTER SUBARRAYS

This element includes all the hardware required for generation, distribution, phase control, and radiation of microwave energy. This includes the subarray structure, waveguides, power amplifiers, phase control electronics, and power harnesses. Also included are thermal control devices and finishes that are manufactured as an integral part of the subarray.

1.1.2.3 POWER DISTRIBUTION AND CONDITIONING

This element includes the power conductors, switch gear, and conditioning equipment required to transfer power from the interface subsystem to the subarray wiring harnesses and to any other power-consuming/storage equipment located on the power transmission structure, such as batteries.

1.1.2.4 THERMAL CONTROL

This element includes any component used to modify the temperature of power transmission subsystem components. It includes coldplates, heat transfer and radiator devices, as well as insulation, thermal control coatings, and finishes. Excluded are paints and finishes applied to components during their
manufacturing sequence and thermal control devices that are an integral part of another component.

1.1.2.5 CONTROL

This element provides the reference phase for all subarray phase conjugating circuits. This includes the reference oscillator signal distribution and frequency conversion equipment plus components that commonly serve all subarrays.

1.1.2.6 MAINTENANCE

This element provides for in-place repair or replacement of components and includes work stations, tracks, access ways, and in situ repair equipment.

1.1.3 INFORMATION MANAGEMENT AND CONTROL

This element includes those components that process information on board the satellite. This includes sensing, signal conditioning, formatting, computations, formulation and signal routing.

1.1.4 ATTITUDE CONTROL AND STATIONKEEPING

This element includes the components required to orient and maintain the satellite's position and attitude in GEO. Included are sensors, reaction wheels, chemical and electric propulsion hardware, and propellants.

1.1.5 COMMUNICATIONS

This element includes the hardware to transmit and receive intelligence among the various SPS elements. This includes communication of both data and voice between the SPS and the control center, as well as among the various cargo and personnel vehicles. Excluded is intravehicular and intrasatellite communications.

1.1.6 INTERFACE (ENERGY CONVERSION/POWER TRANSMISSION)

This element provides the movable interface between the energy conversion subsystem and the power transmission subsystem. A 360° rotary joint and an antenna elevation mechanism are required to maintain proper alignment of the transmitter with the ground receiving station. Included are structure, mechanisms, power distribution, thermal control, and maintenance hardware.

1.1.6.1 STRUCTURE

This element includes all members necessary to provide a mechanical interface between the primary structures of the energy conversion subsystem and the power transmission subsystem. It includes beams, beam couplers, cables, tensioning devices, and secondary structures. Excluded are elements of the drive assembly which are included in mechanisms (WBS No. 1.1.6.2).

1.1.6.2 MECHANISMS

This element includes the components required to rotate and elevate the power transmission subsystem. Included are the drive ring, bearings, gear drives and drive motors.

1.1.6.3 POWER DISTRIBUTION

This element provides for the transfer of electrical power through the interface. It includes slip rings, brush assemblies, feeders, and insulation.

1.1.6.4 THERMAL CONTROL

This element includes any component used to modify the temperature of 'interface subsystem components. It includes coldplates, heat transfer and radiator devices, as well as insulation, thermal control eoatings, and finishes. Excluded are paints or finishes applied to components during their manufacturing sequence.

1.1.6.5 MAINTENANCE

This element provides for in-place repair or replacement of components and includes work stations, tracks, access ways, and in situ repair equipment.

1.1.7 SYSTEMS TEST

This element includes the hardware, software, and activities required for ground-based systems tests including qualification tests and other development tests involving two or more subsystems or assemblies. It includes the production, assembly, integration, and checkout of satellite system hardware into a full or partial system test article. It also includes the design, development, and manufacture of special test equipment, test fixtures, and test facilities that are not included in other elements such as ground support faciliteis. Also included are the planning, documentation, and actual test operations.

1.1.8 GROUND SUPPORT EQUIPMENT (GSE)

This element includes all ground-based hardware required in support of handling, servicing, test, and checkout of the satellite subsystems. It also includes special hardware required for simulations and training.

1.1.9 PRECURSOR TEST ARTICLE

The precursor pilot plan test article and operations are included in this element. It represents a test vehicle that consists of an energy conversion, interface, and power transmission segment.

1.2 SPACE CONSTRUCTION AND SUPPORT

This element includes all hardware and activities required to assemble, check out, operate, and maintain the satellite system. Included are space stations, construction facilities, support facilities and equipment, and manpower operations.

1.2.1 CONSTRUCTION FACILITIES

This element includes the facilities, equipment, and operations required to assemble and check out the satellite system. Included are crew life support facilities, the central control facility, fabrication and assembly facilities, cargo depots, and operations.

1.2.1.1 WORK SUPPORT FACILITIES

This element includes the facilities and equipment required for satellite assembly and checkout. Included are beam fabricators, manipulators, assembly jigs, installation and deployment equipment, and cargo storage depots. Excluded are the facilities related to crew support.

1.2.1.2 CREW SUPPORT FACILITIES

This element includes the facilities and equipment required for the life support and well-being of the crew members. Included are living quarters, center control facilities, recreation facilities, and health facilities of the satellite construction base.

1.2.1.3 OPERATIONS

This element includes the planning, development, and conduct of operations at the construction facility. It includes both the direct and support personnel and the expendable maintenance supplies required for satellite assembly and checkout.

1.2.2 LOGISTICS SUPPORT FACILITIES

This element includes the hardware, software, and operations required in low earth orbit (LEO) to support the construction and operations and maintenance of the satellite system. Included are crew life support facilities, cargo and propellant depots, and vehicle servicing facilities necessary for the receiving, storage, and transfer of cargo and personnel destined for a construction base or operational satellite located in GEO.

1.2.2.1 WORK SUPPORT FACILITIES

This element includes the facilities and equipment required to provide logistics support in LEO. Included are heavy-lift launch vehicle (HLLV) and orbital transfer vehicle (OTV) docking stations, payload handling equipment, and cargo and propellant storage depots. Excluded are facilities related to crew support.

1.2.2.2 CREW SUPPORT FACILITIES

This element includes the facilities and equipment required for the life support and well-being of the crew members. Included are living quarters, recreation facilities, and health facilities of the LEO Base.

1.2.2.3 OPERATIONS

This element includes the planning, development, and conduct of operations at the logistics support facility. It includes both the direct and support personnel and the expendable maintenance supplies required for logistics support.

1.2.3 O\&M SUPPORT FACILITIES

This element includes the facilities, equipment, and operations required in GEO to support the operations and maintenance of the satellite system. Included are the on-orbit monitor and control facility and the life support facilities and equipment required to provide comfortable, safe living quarters for the resident crew members.

1.2.3.1 WORK SUPPORT FACILITIES

This element includes the facilities and equipment required for operation and maintenance of the satellite system. Included are satellite monitor and controi stations and any centralized repair facilities not included under maintenance (WBS Numbers 1.1.1.6, 1.1.2.6, and 1.1.6.5).

1.2.3.2 CREW SUPPORT FACILITIES

This element includes the facilities and equipment required for the life support and well-being of the crew members. Included are living quarters, recreation facilities, and health facilities.

1.2.3.3 OPERATIONS

This element includes the planning, development, and conduct of operations at the O\&M support facility. It includes both the direct and support personnel and the expendable maintenance supplies required in GEO for satellite operations and maintenance.

1.3 TRANSPORTATION

This element includes all space transportation required to support the satellite system assembly and operation; and the ground support facilities to provide a launch, recovery, propellant, logistics, and operational capability. Included are the launch to LEO and the orbit-to-orbit transfer of all hardware, materials, and personnel required during the construction and lifetime operation of the satellite system.

1.3.1 HEAVY-LIFT LAUNCH VEHICLE (HLLV)

This element includes the HLLV vehicles and operations required to support the satellite system assembly and operation. Included is the launch to LEO of all space construction and support equipment, satellite system hardware, OTV's, propellants, and other consumables required throughout the satellite lifetime.

1.3.1.1 HLLV VEHICLE

This element includes the vehicle fleet procurement required to support the SPS project.

1.3.1.2 HLLV OPERATIONS

This element includes the necessary vehicle operations (user charge per flight including payload integration) required to support the SPS project.

1.3.2 CARGO ORBITAL TRANSFER VEHICLE (COTV)

This element includes the COTV vehicles and operations required to support the satellite system assembly and operation. Included is the LEO-to-GEO transfer of space construction and support equipment, satellite system hardware, spares, and propellants required throughout the satellite lifetime.

1.3.2.1 COTV VEHICLES

This element includes the vehicle fleet procurement required to support the SPS project.

1.3.2.2 COTV OPERATIONS

This element includes the necessary vehicle operations (user charge per flight including payload integration) required to support the SPS project.

1.3.3 PERSONNEL LAUNCH VEHICLE (PLV)

This element includes the PLV and cargo vehicles of the growth Shuttle and operations required to support the satellite system assembly and operation. Included is the launch to LEO and return of all personnel and priority cargo required throughout the satellite construction period and operational lifetime.

1.3.3.1 PLV VEHICLES

This element includes the vehicle fleet procurement required to support the SPS project. Included are the vehicles for personnel transfer from earth to LEO and for cargo transfer as needed to support elements of the precursor phase of program development.

1.3.3.2 PLV OPERATIONS

This element includes the necessary vehicle operations (user charge per flight including payload integration) required to support the SPS project.

1.3.4 PERSONNEL ORBITAL TRANSFER VEHICLE (POTV)

This element includes the POTV vehicles and operations required to support the satellite system assembly and operation. Included is the LEO to GEO and return transfer of all personnel and priority cargo required throughout the satellite construction and operational periods.

1.3.4.1 POTV VEHICLES

This element includes the vehicle fleet procurement required to support the SPS project.

1.3.4.2 POTV OPERATIONS.

This element includes the necessary vehicle operations (user charge per flight including payload integration) required to support the SPS project.

1.3.5 PERSONNEL MODULE (PM)

This element includes the PM units and operations required to support the satellite system assembly and operation. Included is the LEO to GEO and return transfer of all personnel and critical hardware items required throughout the satellite construction and operational periods. The PM provides a crew habitat during the orbit-to-orbit transfers of personnel.

1.3.5.1 PM VEHICLES

This element includes the PM unit procurement required to support the SPS project.

1.3.5.2 PM OPERATIONS

This element includes the necessary operations (user charge per flight including payload integration) required to support the SPS project.

1.3.6 INTRA-ORBITAL TRANSFER VEHICLE (IOTV)

This element includes the IOTV vehicles and operations required to support the satellite system assembly and operation. Included is the intra-orbit transfer of cargo between the HLLV, COTV, construction facility, logistics support facility, and operational satellites.

1.3.6.1 IOTV VEHICLES

This element includes the necessary vehicle fleet procurement required to support the SPS project.

1.3.6.2 IOTV OPERATIONS

This element includes the necessary vehicle operations (recurring refurbishment and propellant costs) required to support the SPS project.

1.3.7 GROUND SUPPORT FACILITIES

This element includes all land, buildings, roads, shops, etc., required to support the cargo handling, launching, recovering, refurbishment, and operations of the space transportation system.

1.3.7.1 LAUNCH FACILITIES

This element includes the design and construction of the actual launch facility and its associated equipment. Included are land, buildings, and equipment required to support the various crews. It also includes the required control centers and administrative facilities.

1.3.7.2 RECOVERY FACILITIES

This element covers the design, construction, and equipping of the actual recovery facilities.

1.3.7.3 FUEL FACILITIES

This element includes fuel production facilities, storage and handling facilities, transportation, and delivery and safety facilities for both the fuel and the oxidizer. Also included are the facilities for fuels used in the various orbital transfer facilities.

1.3.7.4 LOGISTICS SUPPORT

This element includes the land, buildings, and handling equipment for the receiving, inspection, and storage and packaging of all payloads to be launched except for fuels and oxidizers.

1.3.7.5 OPERATIONS

This element includes the planning, development, and conduct of operations at the ground support facilities. It includes both the direct and support personnel and the expendable maintenance supplies required for the ground support facilities operation and maintenance.

1.4 GROUND RECEIVING STATION

This element includes the land, facilities, and equipment that comprise the ground subsystems utilized to receive the radiated microwave power beam and to provide the power at the required voltage and type of current for entry into the national power grid. Also included are the equipment and facilities necessary to provide operational control over the satellite.

1.4.1 SITE AND FACILITIES

This element encompasses the site and facilities for the ground receiving station system which includes the rectenna, grid interface, and. satellite control subsystems. Included are the land, site preparation, roads, fences, utilities, lightning protection, buildings, and maintenance equipment required to house and support the other ground station subsystems.

1.4.2 RECTENNA SUPPORT STRUCTURE

This element includes the hardware, materials (steel and concrete), and assembly operations necessary to erect the physical support for the rectenna array elements of WBS No. 1.4.3.

1.4.3 POWER COLLECTION

This element includes the antenna array elements associated with the actual reception and rectification of the microwave radiation. These elements are in series and parallel as required to deliver the required output voltage and
current. Also included are those components that accept the dc power from the array elements and route, control, convert, and switch this power for delivery to power conversion stations of the grid interface.

1.4.4 CONTROL

This element includes the hardware that will be used to monitor and control the satellite from the ground. Included are telemetry, tracking, communications, monitoring of microwave beam characteristics, computing phase corrections, and providing frequency standard signals for the satellite. Functional requirements provide for signal conditioning, formatting, software, computations, and signal routing.

1.4.5 GRID INTERFACE

This element includes the power conversion equipment that receives the electrical power from the power collection subsystem and conditions/converts it to a high voltage dc or ac power acceptable for input into the national power grid. Also included are those components necessary to route, control, and switch this power into the national power grid.

1.4.6 OPERATIONS

This element includes the planning, development, and conduct of operations at the ground receiving station. It includes both the direct and support personnel and the expendable maintenance supplies required for the ground station operation and maintenance.

1.5 MANAGEMENT AND INTEGRATION

This element includes all efforts and material required for management and integration functions at the systems level and program level. It encompasses the following functions:
a) Program Administration
b) Program Planning and Control
c) Contracts Administration
d) Engineering Management
e) Manufacturing Management
(f) Support Management
(g) Quality Assurance Management
(h) Configuration Management
(i) Data Management
(j) Systems Engineering and Integration

This element sums all of the direct effort required to provide management control, including planning, organizing, directing, and coordinating the project to ensure that overall project objectives are accomplished. These efforts overlay the functional work areas (e.g., engineering, manufacturing, etc.) and assure that they are properly integrated. This element also includes the efforts required in the coordination, gathering, and dissemination of management information. Also included are the engineering efforts related to the establishment and maintenance of a technical baseline for a system by generation of system configuration parameters, criteria, and requirements. It includes requirements analysis and integration, system definition, system test definition, interfaces, safety, reliability and maintainability. It also includes those efforts required to monitor the system development and operations to ensure that the design conforms to the baseline specifications.

APPENDIX B
 SATELLITE POWER SYSTEM COST ESTIMATING RELATIONSHIPS (CERs)

SOLAR PHOTOVOLTAIC GaA1As
CONCENTRATION RATIO (CR) - 2
THREE-TROUGH COPLANAR
END-MOUNTED ANTENNA
CONFIGURATION

APPENDIX B SATELLITE POWER SYSTEM COST ESTIMATING RELATIONSHIPS (CERs)

B. 0 INTRODUCTION

This appendix contains the cost analyses and a description of cost elements that comprise the SPS program. Each item is presented in accordance with the work breakdown structure of Appendix A and is responsive to the Rockwell reference configuration defined under Exhibit C of NAS8-32475 -- a 3-trough planar array with an end mounted tension web antenna (Figure B-1).

Subsequent sections of this appendix describe the definitions and ground rules used during the cost analysis; the methodology followed in developing estimates and the computer program; plus a detailed discussion of each subsystem, assembly, or component used in the analysis. These descriptions include design input parameters, cost estimates, scaling exponents/factors, and supporting computer program cost model equations for each of the WBS items.

B. 1 COSTING GROUND RULES AND GUIDELINES

The following major ground rules and assumptions were used in the performance of this study:

1. The SPS WBS of Appendix A was used as the structure of program hardware, activities and accounts.
2. Key dates of program planning:

1980 - 1985 Ground Based Exploratory Research Activities
1981 - 1987 Key Technology Program Activities
1990 Decision Point for SPS Commercialization (Phase C/D)
2000 IOC of First SPS
3. Costs are reported at WBS level in terms of:
(a) Development cost and TFU (theoretical first unit).
(b) Initial capital investment average cost per satellite (Satellites TFU and No. 2 through No. 60).
(c) Replacement capital investment (RCI) cost and operations and maintenance ($O \& M$) cost per satellite per year.
4. Cost estimates are projected in 1977 dollars and maximum use was made of past SPS studies and other associated data as appropriate.
5. SPS build rate will be two nominal 5 GW SPS systems per year for 30 years to provide a total capacity of 300 GWs by 2030.
6. Overall SPS lifetime will be 30 years with minimum maintenance and no salvage value or disposition costs.
7. Complete construction and assembly will occur at GEO synchronous orbit.
8. Calculations based on 0% launch losses.
9. Program management and SE\&I (management and integration) are costed at 5% of all other level 2 costs.
10. 25% mass contingency is costed as a 15% cost contingency on items 1.1 , 1.2 , and 1.3 of the SPS WBS.

B. 2 COSTING METHODOLOGY

The approach followed in developing cost estimates for the SPS Program was based on the maximum use of contract and company sponsored work. The basic Rockwell - NASA/MSFC computer cost model was expanded considerably to incorporate the requirements of a revised WBS structure (Appendix A). The data base
of existing and proved CERs was expanded by grass roots analysis and specific engineering estimates on the flight vehicles and ground receiving station to provide cost projections based on industrial/consultant experience and on similar contract effort such as those of the Rockwell Space Shuttle and Space Station programs. Costing of some WBS elements utilized previously developed data with slight modification to incorporate reference systems specifications.

There are a series of equations that were used to deal with the four basic types of cost accounts and phases of the program -- DDT\&E, initial capital investment, replacement capital investment, and operations and maintenance.

The DDT\&E equation (CD) estimates the cost of the design, development, and test/evaluation of WBS line items for the satellite, space construction and support, transportation, and ground receiving station, plus management and integration support. Management and integration are costed as a separate line item at 5% of all other level two costs of the WBS. Because of the gross nature of the level of information/definition on systems test and GSE (ground support equipment), the cost of system test hardware, and system test operations, has been assumed to be one-half of the satellite system first-unit costs. A 10% factor of satellite DDT\&E is used for GSE.

The appropriate inputs for the DDT\&E CERs are the applicable total system mass, area, or power. A development factor is provided in the equation (DF) to adjust the cost to reflect only that portion of the total system mass, area or power considered necessary for development of the complete system where it is not required to develop the total mass, area or power. The CD cost equation also allows for the application of a complexity factor (CF) to adjust the cost results when it is determined that the item being estimated is either more or less complex than the CER base data.

The initial capital investment (ICI) cost equations estimate the initial capital investment cost of hardware items as a function of their mass, area or power. The ICI cost equation is expressed in four different forms -- CLRM, CTFU, CTB, and CIPS. The CLRM (cost of lowest repeating module) equation requires that the input correspond to the mass, area or power of the lowest repeating module (M). This is necessary because of the physical scale of the SPS and the production quantities required for many of the hardware elements. It is not reasonable to estimate the SPS initial capital investment cost as a historical function of the entire SPS mass, area or power. Instead, it is desirable to cost the number of repeating modules required per satellite to establish the satellite theoretical first-unit cost (TFU), and to input the satellite TFU cost into a progress (learning) function for the quantity of satellites required to calculate the average unit cost (CTB - cost to build). This calculation involves two steps in the cost equations. The first step (CLRM) is simply the portion of the equation which estimates the theoretical first repeating module cost as discussed above. The second step (CTFU) has the progress function incorporated into the equation for the quantity of repeat modules required for the first satellite. It automatically takes into account the progress over production quantities required when calculating the cost to build an average unit over the total option quantity. This CTB calculation is then the basis of CIPS, where the number of units to construct a satellite option are divided by the option quantity and then multiplied by the

CTB. In some ICI cost equations, such as those of SPS transportation, the space vehicle has a service life that is greater than that needed to construct a single satellite. The CIPS equation provides the cost model with a needed program flexibility.

At the current level of SPS definition, it was difficult to decide just what is a repeating module. It is often impossible to know with any certainty just what portion of the total mass is appropriate to run through the equation as a module. It is just as difficult to identify how many distinct types or designs of modules will be required for any subsystem or assembly. In such cases, the study simply assumed a module mass (or area or power) based on engineering best judgment.

Replacement capital investment (CRCI) CERs simply provide for the multiplication of the annual spares fraction (R) of each system by that system's cost to build in order to arrive at an RCI cost per satellite per year.

Operations and maintenance costs (CO\&M) are estimated in terms of $O \& M$ cost per satellite per year. O\&M costs include those expenditures incurred in day-to-day operations beginning with SPS initial operating capability (IOC) and continuing over the life of each satellite. They consist of wages of operations and maintenance personnel, minor repairs and adjustments to systems to maintain an ordinarily efficient operating condition, expendables and consumables, launch costs for delivery and transfer of on-orbit personnel and cargo resupply of expendables and consumables, etc.

The cost methodology seeks to account for five separate effects which influence SPS cost. These are scaling, specification requirements, complexity, the degree of automation, and production progress. Scaling refers to the relationship in cost between items varying in size, but similar in type. Economies of scale usually assure that such a relationship will not be strictly linear, but rather as size increases, cost per unit of size will decrease. The slope of this relationship is reflected by the equation exponent which results from the regression analysis of the data used to develop the cost estimating relationship.

Specification requirements have been accounted for by normalizing the CER data base to manned spacecraft specification levels using factors from the RCA Price Model. ${ }^{1}$ From that model, an average cost factor to adjust MILSPEC to manned spacecraft is around 1.75 for DDT\&E and 1.6 for production cost. Under the assumption that some relaxation of Apollo-type specifications can be made for the SPS, a factor of 1.5 was assumed for both DDT\&E and production cost. Furthermore, it was assumed that a factor of 3.0 would adjust commercial specifications to SPS requirements. Therefore, military or commercial cost data used in the CERs were adjusted upward by factors of 1.5 and 3.0 , respectively.

The cost equations allow a complexity factor input to adjust the cost result when it is determined that the item being estimated is either more or less complex than the listed CER data base.

[^3]The degree of automation is accounted for in certain cost equations through an adjustment to the CER coefficient by the tooling factors given in Table B-l. The effect of tooling is dependent upon the annual production rate. Higher production rates allow harder tooling and, thus, effect cost reductions. The tooling factors are used only on those CERs which are based on historical aerospace programs with limited annual production rates. Tooling factors are not used on those CERs which are based on data already reflecting automated production techniques (e.g., the commercial electronics data for the microwave antenna CER).

Table B-1. SPS Tooling Factors

AVERAGE ANHUAL PRODUCTION RATE (AAPR)	TOOLING FACTOR (TF)	PROGRESS FRACTION (0)
$1-2$	$1-0$	0
$3-5$	0.9	0.80
$6-9$	0.8	0.80
$10-19$	0.7	0.80
$20-39$	0.6	0.85
$40-69$	0.5	0.85
$70-109$	0.3	0.85
$110-159$	0.2	0.85
$160-219$	(AAPR)	0.35
$120-999$	(AAPR)	0.35
$1000-9999$	(AAPR)	
10,000		0.95

The decreasing cost effects of progress due to production process improvements or direct labor learning are accounted for through standard progress functions. Many SPS components will be mass produced in a capital intensive manner and will experience little labor learning. Other SPS hardware items, however, will be produced at very low annual rates, much in the labor-intensive manner of historical spacecraft programs, and therefore would experience learning. (Technically distinguishable from learning, but still predictable with the same form of exponential function, are the effects of production process improvement. In this model, when progress functions are used, they are meant to account for both of these effects.) A constant relationship has been assumed between the progress fraction and the annual production rate as given in Table B-1.

As required by the costing ground rules and assumptions, all CERs are in terms of 1977 dollars. The study did assume 1990 technology and 1990 supply/ demand conditions which, in some cases, resulted in differential (non-general) price inflation or deflation between 1977 and 1990 being included in the CERs. Specifically, it was assumed that composite raw material prices and some electronic component prices will decrease relative to general prices while aluminum coil stock prices will increase relative to general prices. Such effects are allowed for by the CERs, but only to the extent that the expected price changes differ from expected general price changes. The CERs affected are the antenna structure CER, the power source structure CER, and the microwave antenna CER.

Definitions of SPS cost model terms and equation abbreviations are presented in Table B-2.

Table B-2. Definitions of SPS Cost Model Elements

c	- COST IN Millions OF 1977 dollars
CD	- dotse cost
CDCER	- DDTEE COST ESTIMATING RELATIONSHIP (CER)
CDEXP	- DDTEE SCALING EXPONENT
CER	- Cost estimating relationship
cF	- COMPLEXITY FACTOR
CICER	- initial capital investment cost estimating RELATIONSHIP (CER)
ciexp	- initial capital investhent cost scaling exponent
CTB	- cost to build an item
CIPS	- investment per satellite cost
CLRM	- LOWESt repeating module cost
COSM	- operations and maintenance cóst per satellite per year
CRC	= replacement capital investment cost per satellite per year
CTFU	- theoretical first unit cost
DDTEE	= DESIGN, DEVELOPMENT, TEST AND EVALUATION
DF	= development fraction
E	- 1.0 + LOG (PHI) \div LOG (2.0)
ICI	- initial capital investment
INV. PE	= average unit investaent cost (2 thru nl
M	- mass, power, area of lowest repeating module
FRM	= number of repeating modules
OPS	- OPERATIONS
OCH	= operations and maintenance cost per satellite per year
PHI	- Progress fraction
R	- annual spares fraction
RCI	= REPLACEMENT CAPItal investment cost per satellite per year
T	- total (mass, power, area) per satellite
TF	- TOOLING FACTOR
TFU	- theoretical first unit
21	- TFU REQUIREMENT
22	= SPS OPTION QUANTITY
23	= total sps requirement per option
24	- ItEMS meeded to construct satellite option
25	- items needed for oem of the satellite option

B. 3 SPS PROGRAM COST BREAKDOWNS

An overall cost relationship for the SPS program is shown in Figure B-2. Principal areas of SPS costing are represented to indicate the emphasis on expenditures as the program moves from one phase to the next.

Subsequent tables sumarize the cost data used in developing Figure B-2. They reflect SPS-related development cost DDT\&E (CD) data through the first 5-GW satellite (TFU). Table B-3 includes space construction/support, transportation

INVESTMENT PER

Figure B-2. SPS Cost Relationships
vehicles/operations, and the ground receiving station needed to establish SPS operational capability. This means that the TFU cost includes elements with a lifetime capability of building more than one SPS. Table B-4 summarizes the investment cost per satellite (CIPS) and the replacement capital investment cost (CRCI) plus operations and maintenance (CO\&M) per satellite per year.

Table B-3. SPS Program Development Cost

wBS	CESCRIPTION	DOTGE	UEVE LUPMENT	total
1	SAIELTIE PUNEX STSTEM (SPS) PROGRAM	320 ล1.702	31103.202	04505.000
1.1	SATELLIIE SrStem	. 7933.570	7950.922	159ym.492
1.2	Srace cunstructiun e iumport	7331.100	460<.3<3	15933.703
1.3	TKANSS ¢URTAİİN	12463.514	<20n6.199	35335.016
-- 1.4	gkoung Heceiving stat jun	. 115.699	3018.727	3734.427
1.5	management and integration	1392.403	2151.91a	3540.3 32
2.6	mass cuntincenty	4100.331	5412.445	15072.977

Table B-4. SPS Program Average Cost

B.3.1 DEVELOPMENT COST (DDT\&E) AND THEORETICAL FIRST UNIT (TFU)

The total program DDT\&E and TFU cost for a first full-up nominal 5-GW SPS system is $\$ 84.5$ billion. The DDT\&E of $\$ 33.4$ billion and the $\$ 51.1$ billion for the TFU are detailed by SPS WBS line item in a subsequent table. Detailed DDT\&E cost breakdowns show that over 60% of the DDT\&E cost is identifiable to transportation and support systems, and the satellite system.

In view of the physical size of the satellite and supportive subsystems and the large quantities required for certain parts and components, it was not considered reasonable to estimate the DDT\&E costs as a function of the total mass, area, or power per subsystem-which is generally the method; instead, it was considered desirable to determine the DDT\&E costs by application of a development factor (DF). In general, the DF was applied on the basis of a particular system/component in conjunction with the engineering staff and as related to the program development scenario and the usage/availability of the system when needed. For example, the $335-\mathrm{MW}$ EOTV precursor test article is required early in the program for MW verification. The SCB will build this unit first and the DDT\&E effort on the many components must be satisfied before items can be made available. Typical items include the structure, concentrators, solar cells, power distribution, and supporting systems that are design verifications of the full-up SPS satellite. As a result of this approach, a 1.0 DF was used on components of the EOTV test article; whereas on other usages of these systems, such as on the EOTV's or similar systems of the satellite itself, a reduced factor was applied in recognition of the earlier completed DDT\&E effort. This rationale was also followed in other areas of the SPS program cost analysis.

DDT\&E and TFU cost breakdowns are shown in Table B-5. The TFU listing reflects a somewhat different makeup of costs when compared to the DDT\&E costs. TFU estimates of $\$ 51.1$ billion include the full dollar assessment for an initial satellite and ground receiving station, include space transportation fleets; the LEO, SCB, and support assembly equipment; and the facilities needed to establish a 5-GW SPS operational capability. This means that the TFU cost includes elements with a lifetime capability of servicing/building more than one SPS system. In this regard, analysis will show that transportation and space construction and support equipment represent the largest portion of total TFU costs. However, these systems will be used to construct remaining satellites.

```
ROCKWELL SPS CR-2 REFERENCE CONFIGUKATIUN
```

TAGLL B-5. SATELLITE POWER SYSTEM (SPS) PROGKAM DEVELOPMENT COSf

KUCKWELL SPS CR－2 REFERENCE CONFIGUKAIIUN
TABLE B－5．SAIELLITE POWER SYSTEM（SPS）PRUGRAM UEVElOPMENT CUSt

WBS \％DESCRIPTION			DEVELOPMENT		
	．1．2．${ }^{2}$	MAINTENANCE	712.600	66.923	779.613
	．1．2．6．1	malntenance－Fket flytrs	0.0	36.368	36.363
	1． 2.6 .2	GANTRY CKAINE	91.60	0.220.	91.280
	1．2．0．j	On－CRaNE CUNTRUL CENTER	621.600	30.305	651.905
	．1．2．6．4	TKACKS \angle ALCESS WAYS	0.0	$0.0 \in 0$	0.060
	－1．3	INFORMATIUN MGMI．\＆CGNIRUL	72.565	196.897	209．464
	．1．3．1	MASTEK CUNTKUL COMPUTEK	16.127	7.845	23.972
	．1．3．2	DISPLAYS E CONTROLS	10.745	1.211	11.956
	1．1．3．3	SUPERVISSKKY COMPUIEK	2.753	2.325	5.078
	．1．3．4	REMUTE CUMPUTEK	2.643	5.696	8.339
	．1．3．5	BUS CONTKGL UNIT	0.415	6.940	7.354
	．1．3．6	MICROPROCESSIRS	0.431	6． 861	7.312
	．1．3．7	KEMUTE ACGUISITIUN \＆LUNTKOL	0.414	7.450	7.864
	．1．3．8	SUBMULTIPLEXURS	0.266	66.119	06.385
	1．1．3．4	INSTRUMENTATIUN	28.600	74.192	102．192
$\stackrel{\square}{\circ} 1$	．1．3．10	OHTICAL FIEER	0.807	0.634	1.442
	．1．3．11	Cables／harness	9.903	17.604	27.567
	． 1.4	ATIITUUE CUVIRUL \＆STATIONKEEPING	区． 218	12．488	80.671
	．1．4．1	ACSS HAKUWARE	8.103	72.488	80.671
	．1．4．2	ACSS PKCPLLLANT	0.0	0.0	0.0
	． 1.5	CUMMUNICATIUIVS	0.0	0.0	0.0
	．1．2．1	Satellitl tu ground	0.0	0.0	0.0
	．1．b．z	Satellite tu kesufrly vehicles	0.0	0.0	0.0
	．1．5．3	SAIELLITE INTERCOM	0.6	0.0	0.0
	．1．ci	INTERFACE	56.309	118.500	174.869
	．1．t．1	STRUCIUKE	35.115	76.827	111.942
	．1．0．1．1	rRIMARY STRUE゙TURE	11．038	6.000	17.630
	．1．c．l．2	SECUNUAFY ̇TKUCTUKE＇	23.470	70.827	44.303
	．1．t．c	MECHANISMS－INI＝KFACL	15.225	7.878	23.103
	．1．0．3	HQWER DIこTRIJUTIUN	5.469	7.003	12.972
	．1．6．3．1	Cundultun \＆InSUlatiun	5.178	5.068	16.246
	．1．0．3．2	SLIP RINE URUSHES	0.791	1.935	2.726
	．1．0．4	THEKMAL CUIVIRUS	0.0	0.0	0.0
	．1．6．5	MAINTENANC：	0.0	20.852	26.852
	．1．t．t．1	maintenaince－Fret flyers	0.0	7.530	7.530

KUCKWELL SPS CR-2 REFERENCE CONFIGURAIICIN
 TABLE B-5. SATELLITE PONER SYSTEM (SHS) PRUGKAM DEVELUPMENT COST

KOLKNELL SPS CR-2 KEFERENCE CUNFIGURAIILIN
IABLE B-5. SATELLJTE POWER SYSTEM (SHS) RRUGRAM UEVELUPMENT COST

KUCKNELL ذHS CK-Z REFERENCE CONFIGURATIUN
TABLE B-5. SATELLITE POWER SYSTEM (SHS) PRUGRAM DEVELOPMENT COST

KOCKWELL SPS LK-2 KEFERENCE CONFIGUKATIUN
TAELE B-5. SATELLIJE PUWER SYSTEM (SHS) PRUGKAM UEVELOPMENT COSI

RUCKWELL SHS CK-2 KEFËRENCE CONFIGURATIUN
IAtLE B-5. SAIELLITE POWER SYSTEM ISFSI PKUGRAM DEEVELUPMENT CUST

B.3.2 INVESTMENT AND OPERATIONS

Detailed investment and RCI/O\&M cost data are shown in Table B-6. Investment costs were developed at two levels:
(1) Initial capital investment (ICI), which is the cost of production, assembly, installation, transportation, and tests of each individual satellite produced, and the ground station system and associated effort necessary to bring the power satellite on line to a 5-GW operational capability.
(2) Replacement capital investment (RCI), which are those expenditures relating to capital asset replacement and major maintenance overhauls/spares that are expected to last for more than one year or result in an improvement to the operating system.

Costs for the transportation fleet needed to construct the satellites are included in the ICI; whereas, the fleet required for O\&M of the satellite over the 30 years is included in the $O \& M$ cost. Replacement capital investment is included in the RCI column.

Investment per satellite is equivalent to the average unit cost of the total SPS requirement-TFU plus satellites and supporting program elements for the 60 -SPS option. Total average ICI cost is projected at $\$ 13.9$ billion. Annual SPS estimates are placed at $\$ 0.45$ billion for RCI and $\$ 0.20$ billion for O\&M.

KOCKWELL SHS CK-2 KEFERENCE CONFIGUKATION
|ABLE B-6. SATELLITE POWER SYSTEM (SHS I PRUGKAM AVERAGE CUST

wbs \# UESCRIPTIUN		INV PER SAt	** UPS KCl	PER OEM	PER YEAK TAL UPS	** TOTAL
1	SATELLITE PWER SYETEM (SFS) PROGRAM	13877.008	451.531	193.713	645.244	14522.910
1.1	SATELLITE SYSTEM	5325.422	205.265	0.705	205.970	5531.391
1.1.1	ENERGY CONVERSIUNT	1851.062	4.500	0.010	4, 510	1656.132
1.1.1.1	STRUCTUKE	96.769	0.174	0.0	0.194	96.983
1.1.1.1.1	HRIMAKY ¿TKUCTURE	35.100	0.070	0.0	0.070	35.170
1.1.1.1.2	SECONDAKY STRUCTUKE	61.689	0.123	0.0	0.123	61.812
1.1.1.2	CONCENTRATURS	67.183	0.134	0.0	0.134	67.318
1.1.1.3	sular blankets	1556.642	3.113	0.0	3.113	1559.805
1.1.1.4	POWER DIST. E CONLIIICNG	91.948	0.109	0.010	0.179	92.127
1.1.1.4.1	SWITCH GEAR \& CuIVERTERS	66.043	0.0	0.0	0.0	66.093
1.1.1.4.2	CONDUCTOKS \& INSULATICN	9.408	0.0	0.0	0.0	9.468
1.1.1.4.3	SLIP KINGS	15.825	0.158	0.0	0.158	15.963
1.1 .1 .4 .4	batiekİ́s	0.238	0.008	0.010	0.018	0.256
1.1.1.4.5	batteky puec	9.324	0.003	0.0	0.003	0.327
1.1 .1 .5	THERMAL LONTROL	0.6	0.0	0.0	0.0	0.0
\% 1.1.1.0	Maintenaive:	39.010	0.890	0.0	0.890	39.899
罗1.1.1.6.1	Maintenance - fret flyeks	23.342	0.585	0.0	0.585	23.977
1.1.1.6.2	MANNEU MAIVIPULATUK	15.198	0.304	0.0	0.304	15.502
1.1.1.6.3	TRACES \& ACCESS WAYS	0.420	5.001	0.0	0.001	0.421
1.1 .2	PUWER TRaNSMISSIUIV	3153.938	197.438	0.485	197.423	3351.861
1.1.2.1	structure	44.175	0.088	0.0	0.088	44.263
1.1.2.1.1	Pkimary structiure	3.350	0.007	0.0	0.007	3.357
1.1.2.1.2	StCONDARY structuke	40.525	0.032	0.0	0.082	40.906
1.1.2.2	TKANSMIITEK SUGARKAYS - KLYSIRONS	2322.604	154.854	0.0	154.854	2477.658
1.1.2.2.1	Klystión oulee	0.0	0.0	0.0	0.0	0.0
1.1.2.2.2	Klysikinin ICI, K, ulm	2322.804	154.854	0.0	154.854	2477.658
1.1.2.3	Puwter ijist. \& Coinditilivivg	526.416	34.454	0.475	34.929	561.334
1.1.2.3.1	SWItCh Gear \& Convekitios	512.556	34.171	0.0	34.171	540.726
1.1.2.3.2	cunjuctlos a insulation	5.348	0.0	0.0	0.0	5.348
1.1.2.3.3	batiekles	9.5cz	0.283	0.475	0.753	9.261
1.1.2.4	thermali ciñtrul - ins llat ion	184.557	1.847	0.0	1.847	186.504
1.1.2.b	Cuntrul - rhast reterence	20.050	0.262	0.010	0.272	20.322
1.1.2.5.1	Referencl frequency eenerafor	0.160	0.003	0.010	0.013	0.113
1.1.2.5.2	disi. SYsitm; Cuarial casle	12.180	0.0	0.0	0.0	12.180
1.1.2.5.3	DISI. SYSTEM, UEVICES	7.770	0.25y	0.0	0.254	8.029

KUCKWELL SH゙S CK-2 KEFERENCE CONFIGUKATIUN
TABLE B-6. SATELLITE POWEK SYSTEM (SPS) PKOGRAM AVERAGE COST

WBS \# UESCRIPTION			INV PER SAT	** OPS CGST RCI	PEK SAT PER YEAK ** TOTAL OEM TOTAL OPS		
	1.1.2.6	MAINTENANCE	55.846	2.933	0.0	5.933	61.779
	1.1.2.6.1	MAINTENANCt - Fktt flytrs	28.784	0.576	0.0	C. 576	29.360
	1.1.2.6. 2	GANTRY CKANE	0.220	0.600	0.0	0.000	0,220
	1.1.2.0.3	UN-CRANE CUNTKOL LEINT ER	26.782	5.356	0.0	5.356	32.139
	1.1.2.6.4	TKACKS \& ACCESS WAYS	C. 160	0.000	0.0	0.000	0.060
	1.1.3	INFURMATION MGMT - \& C LNTRUL	$163 \cdot 159$	1.632	0.0	1.632	164.821
	1.1.3.1	MASTER CONIKIJL CUMPUT LR	2.659	0.027	0.0	0.027	2.685
	1.1.3.2	OISPLAYS \& CUNTKULS	0.453	0.005	0.0	0.005	0.458
	1.1.3.3	SUPERVISURY COMPUTER	0.969	0.010	0.0	0.010	0.979
	1.1.3.4	REMOTE CUMPUTER	2.238	0.022	0.0	0.022	2.260
	1.1.3.5	BUS CONTRUL UNIT	5.128	0.051	0.0	0.051	5.179
	1.1.3.6	MICROPROCESSORS	5.085	0.051	0.0	0.051	5.136
	1.1 .3 .7	KEMOTE ACQUISITION \& CUNTROL	5.505	0.055	0.0	0.055	5.560
	1.1.3.8	SUBMULT1PLEXURS	58.642	0.587	0.0	0.587	54.268
	1.1.3.9	INSTRUMENTATION	65.840	0.658	0.0	0.658	66. 504
	1.1.3.10	GPTICAL FIBER	$\because .578$	0.006	0.0	0.006	0.584
\%	1.1.3.11	CABLES/HAKNESS	16.047	0.160	0.0	0.160	16.207
$\stackrel{+}{\infty}$	1.1.4	ATT ITUOE CONTKOL \& STATIONKEEPING	53.746	0.537	0.132	0.669	54.416
	1.1.4.1	ĀCSS HARUWAKE	53.746	0.537	0.047	0.584	54.330
	1.1.4.2	ACSS rROrELLANT	0.0	0.0	0.085	0.085	0.085
	1.1.5	COMMUNICATIUNS	0.0	0.0	0.0	0.0	0.0
	1.1.5.1	satellite íu grúumb	0.6	0.0	0.0	6.0	0.0
	1.1.5.2	satellite ro resupply vehicles	0.0	0.0	0.0	0.0	0.0
	1.1.5.3	SATELLITE INTERCOM	0.6	0.0	0.0	0.0	0.0
	1.1 .6	INTERFACE	$102.9<9$	1.157	0.078	1.235	104.163
	1.1.6.1	STRUCTURL	08.800	0.134	0.0	0.138	68.998
	1.1.6.1.1	PKIMAKY SIKUCTURE	6.000	0.012	0.0	0.012	6.012
	1.1.0.1.2	SECONDARY DTRUCTUKL	02.060	0.126	2.0	J. 126	62.986
	1.1.0.2	MECHANISMS - INTEKFACE	5.821	0.058	0.078	0.136	5.958
	1.1.0.3	HUWER UJSIKloUTlun	6.510	0.014	0.0	0.014	-6.524
	1.1.0.3.1	CONJUCTUK \& iNSULAIIGIN	5.068	0.0	0.0	0.0	-5.068
	1.1.6.1.2	SLIP KING EKUSHES	1.442	3.214	0.0	0.014	1.456
	1.1.0.4	Thirkmal Clintkul	0.0	0.0	0.0	0.0	0.0
	1.1.0.5	MAINTENANCE	21.738	0.940	0.0	0.440	22.684
	1.1.0.5.1	Main]linaicle - Free flyers	$6.4<0$	0.642	0.0	0.642	7.062

rockwell sps Ck-2 keference configukatiun
TAbLL B-6. SATELLITE PUWER SYSTEM (SPS) rRUGKam average cost

WES \% DESCRIPTION		INV FER SAT	$\begin{gathered} * * O P S \\ R C I \end{gathered}$	T PER O\&M	ER YEAR ups	
1.1.6.5.2	MANNE M MANI PULATUK	15.198	0.304	0.0	0.304	15.502
1.1 .6 .5 .3	TRACKS \& ACCESS WAYS.	0.120	0.000	0.0	0.000	0.120
1.1 .7	SYSTEMS IESI	0.0	0.0	0.0	0.0	0.0
1.1.7.1	SYSTEM GRIUND IEST HAROWARE	0.0	0.0	0.0	0.0	0.0
1.1.7.2	SYSIEM GRGUND TEST URERATIUNS	0.0	0.0	0.0	0.0	0.0
1.1.4	GRUUNU SUPROKT EGUI PMEN!	0.0	0.0	0.0	0.0	0.0
1.1 .4	COTV - precuksur	0.0	0.0	0.0	0.0	0.0
1.1.4.1	cutv precursur vehicle	0.0	0.0	0.0	0.0	0.0
1.1.4.1.1	primakr structure - e.c.	0.6	0.0	0.0	0.0	0.0
1.1.9.1.2	secunisary structure - E.c.	0.0	0.0	0.0	0.0	0.0
1.1.4.1.3	Concentratur - E.c.	0.0	0.0	0.0	0.0	0.0
1.1.9.1.4	SOLAR BLANKET -E.C.	0.0	0.0	0.0	0.0	0.0
i.1.5.1.5	SWITCHGEAK \& CUNVERTEKS-E.C.	0.0	0.0	0.0	0.0	0.0
1.1.5.1.6	conducturs e insulatigiv - E.C.	0.0	0.0	0.0	0.0	0.0
1.1.4.1.7	ACS HARUWAKE - E.C.	0.0	0.0	0.0	0.0	0.0
1.1.4.1.8	SLIPRINGS - -RECURESGR	0.6	0.0	0.0	0.0	0.0
1.1.4.1.9	Primakr structure - Iinterface	0.6	0.0	0.0	0.0	0.0
1.1.4.1.1C	SECLIVAKY STRUCTUKL - INTERFACE	0.5	C. 0	0.0	0.0	0.0
1.1.9.1.11	mechanisms - interface	0.0	0.0	0.0	0.0	0.0
1.1.9.1.12	condulturs e insulatilin	0.0	0.0	0.0	0.0	0.0
1.1.9.1.13	SLIPRING GRUShes - YRECORSGR	0.0	0.0	0.0	0.0	0.0
1.1.9.1.14	HRImary Sikuctuke - ponez trans	3.5	0.0	0.0	0.0	0.0
1.1.9.1.15	SECONDAEY structure - puner trans	0.0	0.0	0.0	0.0	0.0
1.1.9.1.10	IRANSMIIIER SUBAKKA YS - KLYSTRONS IC	0.2	0.0	0.0	0.0	0.0
1.1 .9 .1 .17	SWItchgeak a cunvekiths - p.t. precu	0.0	0.0	0.0	0.0	0.0
1.1.9.1.18	canuucturs e insulatigin - r.t. precu	0.0	0.0	0.0	0.0	0.0
1.1.9.1.14	datlekits - P.l. Hkecuksuk	0.0	0.0	0.0	0.0	0.0
1.1.9.1.2C	thermal contrul - insulation - precl	0.0	0.0	0.0	0.0	0.0
1.1.4.1.21	kefertinct fregueivcy utinerator - prec	0.0	0.0	0.0	0.0	0.0
1.1.4.1.2	UIST. SYSIEM, CUAXIAL LABLE	0.0	0.0	6.0	0.0	0.0
1.1.9.1.23	UIST. SYSILM Devilis	3.0	0.0	0.0	0.0	0.0
1.1.4.1. 24	TKANSMIIItK SULSAKKAYS - Klystrons du	0.0	0.0	0.0	0.0	0.0
1.1 .4 .2	cijiv triziuk juk ur Lkal luns	0.0	0.0	0.0	0.0	0.0
$1 .<$	SPACE CONSTRUCIJUN \& SUPPGRT	1148.332	51.429	11.274	62.701	1211.033
1.2.1	cuivstruciluiv racilatites	143.606	14.081	11.274	30.355	153.961

KJCKWELL دPS CK-2 REFERENCE CONFIGUKATION
TAULE B-6. SATELLITE POWLR SYSTEM (SHS) PRUGRAM AVEKAGE COST

KUCKWLLL むHS CR－2 KEFERENCE CONFIGUKAIIUN
1ABLE B－6．SATELLITE PUWER SYSJEM（SHS）FRUGRAM AVEKAGE COST

WロS $\#$ LESCRIPTION		INV PER SAT	＊＊OHS CUST PEK SAT PER YEAR KCI OEM TOTAL UPS			TUTAL
1．2．2．3	OFEKATIONS	1．C 91	6.0	0.0	0.0	1.091
1．2．2．3．1	LEO DrEKATIUNS CREW	0.749	0.0	0.0	0.0	0.749
1．2．2．3．2	LED CREW PKOVISIUNS	0.342	0.0	0.0	0.0	0.342
1.2 .3	OEM SUPFUKI FACILITIES－SATELLITE	1038.380	14.047	0.0	14.047	1022.433
1．2．3．1	WGRK SUPYUKI FACILIIIES	642.183	7.778	0.0	7.778	699.960
1．c．3．1．1	A1KLOCK LOCKING MOUULE－ADM	40.056	0.267	0.0	0.267	40.323
1．2．3．1．2	BASE MGMT MUUULE－EMM	283.322	5.606	0.0	5.666	288.989
1．2．3．1．3	Pressurilel storage mudule－rsm	$308.8 \mathrm{C5}$	1.844	0.0	1.844	370.649
1．2．3．2	CREW SUPrukI FACILITILS	313.476	6.270	0.0	6.270	319.745
1．2．3．2．1	AIRLOCK DUCKING MUDULE－ADM	13.774	0.275	0.0	0.275	14.349
1．2．3．2．2	CKEW HAEIIASILITY MLDULE－CHM	42.913	1.858	0.0	1.858	94.771
1．2．3．2．3	CUNSUMADLES LDUISTICS MODULE－CLM	63.895	1.278	0.0	1.278	65.173
1.2 .3 .2 .4	CREW SUPROKI MUDULE／EVA	142.894	2.858	0.0	2.858	145.751
1．2．3．3	OPERATIUNS	2.727	0.0	0.0	0.0	2.727
1．2．3．3．1	SATELLITE UPERATIUNS CKEW	1． 072	O． 0	0.0	0.0	－ 1.8 .872
1．2．3．3．2	Satellite ckew prouvis ions	0.355	0.0	0.0	0.0	0.855
1.3	TFANSPDKIATIUN	1449.004	119.343	80.869	200.212	2149.216
1．3．1	SPS－HEAVY LIFT LA UNCH VEHICLE（HLLV）	1256.406	Y\％．64 2	39.372	139.014	1395.420
1.3 .1 .1	SHS－HLLV FLLET	767.620	$99.64<$	24.256	123.89%	890.917
1．3．1．2	SHS－HLLV UPLKAIIÜNS	469.387	0.0	15.110	15.116	504.502
1.3 .2	CARGO URUITAL SKANSFER VEHICLE（CITV）	213.343	1．957	6.371	8.328	218.671
1．3．2．1	COTV VEHICLES	255.681	1.457	6.233	3.190	213.871
1．3．2．1．1	FKIMARY STKUCTUKE	0.506	0.005	0.017	0.023	0.589
1．3．2．1．2．	SECUNOARY STKUCTUKE	142.534	1． 364	4.331	5.696	148.630
1．3：2．1．3	CONCöncatur	0.914	0.009	0.028	0.030	0.951
1．3．2．1．4	SLLLAK BLANKE1	20.077	0.192	0.668	0.860	20.878
1．3．2．1．5	SWITCHGEAK aND CUNVERTERS	0.465	0.001	0.014	0.016	0.481
1．3．2．1．6	CONDUCIUFS AND INSULATITAN	$0.5<5$	0.002	0.016	0.017	0.542
1．3．2．1．7	acs hakuwakl	40.144	0.384	1.218	1.602	41.801
1.3 .2 .1 .6	1NFO．MGM7．ANO LLINTRLL	0.0	0.0	0.0	0.0	0.0
1．3．2．2	CCTV LIPERATIUIVS	4.662	C． 0	0.139	0.134	4.801
1.3 .3	Personivel lauñh Vlhicle（rlv）	423.752	12.495	32.927	45.522	469.674
1．3．3．1	STS－PLV rLLLT	108.433	$1<.945$	14.047	27.042	$\underline{15.474}$
1．3．3．1．1	STS－PLV Lんs ${ }^{\text {STIER }}$	100.340	5.747	8.250	14.047	114.387
1．3．3．1．2	STS－HLV LXIIVVAL IANK	41.675	0.0	3.330	3.330	45.010

KUCKWELL JHS ĊーZ KEFERENCE CONFIGUKATIUN

IABLL B-6. SATELLITE POWER SYSTEM (SPS) PROGRAM AVERAGE CUST

KOCKWELL SPS CR-2 REFEREVCE CONFIGUKATION
table b-6. SATELLITE POWER SYSTEM (SHS) PRUGRAM aVERAGE COST

WBS H DES	SCRIPTION	INV PER SAT	** ups cost per sat per year ** tutal KCI OEM TOTAL GPS			
1.4 .2	RECTENNA SUPPUKT struliure	1827.944	0.075	0.447	0.522	1828.521
1.4.2.1	STELL PANEL HAB. \& INSTALLAIION	1696.443	0.0	0.0	0.0	1696.493
1.4.2.1.1	HAT SECTIGNS	329.224	0.0	0.0	0.0	359.224
1.4.<.1.2	wide flanges	295.170	0.0	0.0	0.0	295.170
1.4.2.1.3	tuae graces \& harlumake	431.343	0.0	0.0	0.0	431.343
1.4.2.1.4	ASSEMELY \& INSTALLAIIUN	610.756	C. 0	0.0	0.0	610.756
1.4.2.2	treinching \& Cuinchetl installation	$131.5 \mathrm{C6}$	0.075	0.447	0.522	132.027
1.4.2.2.1	fuoting cunckete \& ke-bar	73.820	0.0	0.0	0.0	70.820
1.4.z.2.2	MACHINGERY \& EQUIHMENT	0.745	0.075	0.447	0.522	1.267
1.4.2.2.3	constructiln uperalions	59.940	0.0	0.0	0.0	59.940
1.4.2.3	SUPrOKT STKUCTURE DDTEE	0.0	0.0	0.0	0.0	0.0
1.4 .3	PONER CLLLECTIUN	1353.200	0.0	0.0	0.0	1353.200
1.4 .3 .1	antieniva arkay elements	1127.321	0.0	0.0	0.0	1127.321
1.4.3.2	POWER DISTRIGUTION SYSTEM	69.659	0.0	0.0	0.0	- 69.659
1.4.3.3	installailun e chelkour	156.220.	0.0	0.0	0.0	156.220
1.4 .3 .4	puwtr cullection-uutae	0.0	0.0	0.0	0.0	0.0
1.4 .4	cuntrul	75.100	0.0	0.0	0.0	75.000
1.4 .4 .1	CUNTRUL CENTEK EQULFMENT	15.600	0.0	0.0	C. 0	15.000
1.4.4.2	CONTRGL ELECTRUNICS	63.000	0.0	0.0	0.0	63.000
1.4.4.3	CONTROL LUTGE	0.0	0.3	0.0	0.0	0.0
1.4 .5	grid linterface	145.640	0.0	0.0	0.0	145.690
1.4.3.1	electrical Equitment	145.090	0.0	0.0	0.0	145.690
1.4.b.2	GKID INTERFACt-Dul\&e	0.0	0.0	0.0	0.0	0.0
1.4.t	OPERATIUNS	0.0	0.0	77.930	77.930	77.930
1.4.0.1	CPER. \& MAINT. PEhSUNTVEL	0.6	0.0	$6+.800$	64.900	64.900
1.4.6.2	MAINT. MATEKIAL	0.0	0.0	13.130	13.130	13.130
1.5	managtiment aino linitgkation	600.679	16.815	8.501	27.377	628.055
1.0	mass Cuntlingency	1263.413	50.405	13.427	70.332	1333.745

1.0 SATELLITE POWER SYSTEM (SPS) PROGRAM

The program elements described in this section include all the elements of hardware, software, and activities required for the design, development, production, assembly, transportation, operations and maintenance of the Satellite Power Systems Program. Included are the satellite and ground receiving station systems as well as the necessary support systems such as space construction and assembly equipment, plus transportation.

Cost estimates are presented for DDT\&E, Theoretical First Unit (TFU), investment per satellite, replacement capital investment, and operations/ maintenance for SPS program elements in the following categories:

- Satellite
- Space Construction and Support
- Transportation
- Ground Receiving Station
- Management and Integration
- Mass Contingency

1.1 SATELLITE

Elements of the satellite costed in this section include the hardware and software located in geosynchronous orbit for the collection of solar energy, its conversion to electrical energy, and the transmission of this electrical energy in microwave form to earth.

The satellite concept is of a planar array using GaAlAs photovoltaic cells with a solar reflector (concentrator) to provide a concentration ratio of 2.0 suns. The concept consists of 3 main bays with 10 subsections in each of the main bays and is 16,000 meters long by 3900 meters wide with an end mounted antenna adding another 1750 meters to the length (Figure 1.1-1). The total dry weight of the satellite is $26.416 \times 10^{6} \mathrm{~kg}$ (Table 1.1-1). It has a primary structure of composites, GaAlAs solar cells, and a microwave antenna using the klystron power module as a source for the generation of MW energy.

The satellite has been divided into a number of main elements that are included in the following itens as described in the SPS-WBS of Appendix A.

1.1.1 Energy Conversion

1.1.2 Power Transmission
1.1.3 Information hanagement and Control
1.1.4 Attitude Control and Stationkeeping
1.1.5 Communications
1.1.6 Interface
1.1.7 Systems Test
1.1.8 Ground Support Equipment
1.1.9 Precursor Test ArticleTable I.l-1. Solar Photovoltaic Power ConversionMass Statement - $\sim 10^{6} \mathrm{~kg}$ End-Mounted Antenna

SUBSYSTEM	CO-PLANAR (3 TROUGH)
COLLECTOR ARRAY STRUCTURE AND MECHANISMS PRIMARY STRLJCTURE SECCNDARY STRUCTURE MECHANISM ATTITUDE CONTROL POWER SOURCE SOLAR PANELS SOLAR REFLECTORS POWER DISTRIBUTION AND CONTROL POWER CONDITIONING EQUIPMENT POWER DISTRIBUTION CONDUCTORS AND INSULATION SLIP RINGS IAFORMATION MANAGEMENT \& CONTROL DATA PROCESSING INSTRUMENTATION	$\begin{gathered} 1.260 \\ .702 \\ .359 \\ .200 \\ (0.116) \\ (7.855) \\ 6.818 \\ 1.037 \\ (2.603) \\ (.193) \\ (2.410) \\ (2.367) \\ .043 \\ (.050) \\ .021 \\ .029 \end{gathered}$
C TOTAL ARRAY, DRY	11.884
```ANTENMA SECTION STRUCTURE & MECHANISM PRIMARY STRUCTURE SECONDARY STRUCTURE ANTENNA MECHANISM THERMAL CONTROL RLYSTRON CODLING INSULATION RADIATOR MICROWAVE POWER KLYSTRONS ATT. SEN. ELECTRONICS & PHASE CONTROL WAVEGUIDES POWER DISTRIBUTION & CONTROL POWER CONDITIONING EQUIPMENT PONER DISTRIBUTION CONDUCTOR E INSULATION SLIP RING BRUSHES INFORMATION MANAGEMENT & CONTROL DATA PROCESSING INSTRUMENTATION```	$\begin{gathered} (0.977) \\ .120 \\ .599 \\ .067 \\ .191 \\ 1.408 \\ .851 \\ .557 \\ -.012) \\ (7.012) \\ 4.250 \\ .142 \\ 2.620 \\ (4.505) \\ 1.901 \\ (2.604) \\ (2.587) \\ .017 \\ (.630) \\ .380 \\ .250 \end{gathered}$
TOTAL ANTENNA SECTION	14.532
TOTAL SPS DRY	26.416

### 1.1.1 ENERGY CONVERSION

This element includes the components required to collect solar energy, convert the solar energy to electrical energy, condition the electrical energy, and transport it to the interface subsystem (WBS No. 1.1.6).

The satellite structure, solar cells/blankets, concentrators, and power distribution/conditioning subsystems are included in this element plus the necessary maintenance requirements to support operations.

## -1.1.1.1 STRUCTURE

This element includes all necessary members to support the concentrators, solar blankets, and other energy conversion subsystem hardware. It includes structural beams; beam couplers, cables, tensioning devices, and secondary structures which are required as an interface between the primary structure and the mounting attach points of components, assemblies, and subsystems.

### 1.1.1.1.1 Primary Structure

The primary SPS structure assemblies are made up, basically, of tribeam girders, tension cables, and joints. The fabrication and assembly of these structures are accomplished on orbit by beam machines and supporting auxiliary equipment. These structural elements are made of a graphite fiber reinforced composite that must individually withstand the forces, torques, and dynamics imposed by the construction process. Once built into an assembly level, the structure must have sufficient strength and stiffness to withstand the forces of the environment (gravity-gradient torques), the attitude control system (forces and frequencies), and the operational equipment (rotary jointsk microwave induced thermal environment).

The SPS requirement for low thermal distortion, under high themal stress, dictates the need for a material with a very low coefficient of expansion. The most likely candidate, at this time, is a graphite composite material.

The energy conversion structure $D \& D$ CER was developed using graphite composite data obtained from NASA's Redstar Data Base. Tooling cost was excluded under the assumption that this cost would be incurred in the development of orbital fabrication equipment. The following data points were used:

- Space Telescope Shell
- ATS-F Truss
- HEAO Optical Bench
- Shuttle Payload Bay Doors

The primary structure ICI is the cost of raw materials only since the costs associated with fabrication and assembly are charged against orbital assembly and support equipment. The structure ICI cost equation is based on raw composite material stock (prepregnated graphite) cost. These material costs are based on vendor quotes obtained from Hercules, Fiberrite and Union Carbide.

Range of Data
D\&D: $\quad 30.0$ to 2000.0 kg
ICI: Unlimited

### 1.1.1.1.2 Secondary Structure

The secondary structure consists of the passive interface attachment between the primary structure and operational subsystems. The structural members are made of aluminum with the ability to articulate, rotate, or otherwise support/allow motion between the primary structure and other subsystem elements.

This element includes all structure, consisting of mounting brackets, clamps and installation structure required as an interface and mounting attach points of components, assemblies, and subsystems. It also includes any structure required between two or more components or assemblies.

Development of the secondary structure CER for DDT\&E was based on cost data contained in the MSFC Redstar Data Base. Data from a variety of launch vehicle and unmanned satellite programs were available and the applicable data points are listed below:

- S-IVB Interstage
- S-IC Forward Skirt
- X-IC Intertank
- Solar Telescope Housing Assembly (ASM)
- Common Mount Assembly ASM)
- Telescope Gimbal Assembly (ASM)
- Common Mount Actuators (ASM)
- Telescope Gimbal Actuators (ASM)
- Array Platform Elevation Pointing Actuator (ASM)
- UV Gimbal Mount Actuators (ASM)
- UV Instrument Mount Assembly (ASM)
- Solar Array and Boom Structure (ATS-F)
- Squib Interface Unit (ATS-F)
- Interstage (Centaur)
- Nose Shroud (Centaur)
- Fixed Airlock Shroud (Skylab)
- Payload Shroud (Skylab)
- Pallet Segment (Spacelab)
- OSO-1
- ATS-F
- S-II

The ICI production cost CER was based upon an Engineering Cost estimate.
Range of Data:
DDT\&E: 6.0 to $15,000.0 \mathrm{~kg}$
ICI: $\quad 6.0$ to $15,000.0 \mathrm{~kg}$
Input parameters $T \& M$ are in kilograms of mass.

### 1.1.1.1.3 Cost Estimates

Table 1.1.1.1.1 and 1.1.1.1.2 cover cost estimates associated with the primary and secondary structures.

## ROCKWELL SPS CR-2 REFERFNCE CONFIGURATION

TABLE 1.1.1.1.1 PRIMARY STRUCTURE


ROCKWELL SPS CR-2 REFERENCE CONFIGURATION
table l.l.1.1.2 SECONOARY STRUCTURE

INPUTT PARAMETERS
INPUT COEFFICIENTS

$T=$	358000.000	$T F=$	0.007300	CDCER $=$	0.156000
$M=$	5.000000	$0 \varepsilon M=$	0.0	$C D E X P=$	0.511000
$C F=$	1.000000	$Z 1=$	1.000000	0.101000	
$P H I=$	0.980000	$Z 2=$	60.00000	$C I C R=$	
$R=$	0.002000	$23=$	60.000000		
$D F=$	0.050000	$Z 4=$	60.000000	$Z 5=$	0.0


*RM $=T / M$
71600.000
$E=1.0+\operatorname{LOG}(P H I) /$ LOG(2.0)

$\ddot{1}$
$\stackrel{1}{\omega}$

CTFU=(CLRM / E)X(I\#RM X Z1+.5)XX(E) -0.5XX(E))
69.508
$C T B=((C L R M / E) X(1 \# R M X \quad 23+0.5) \times X(E)-0.5 \times X(E)$
$1 / 23$
61.689

CIPS = CTB*Z4/Z2 61.689
CRCI $=$ CTB $\times$ R 0.123
COEM $=$ OEM OR CTB*Z5/Z2/ENYR
0.0

COMMENTS

### 1.1.1.2 CONCENTRATORS

This element concentrates the solar energy onto the solar blanket to increase the energy density on the conversion device. It includes the reflective material and any integral attach points required for mounting. Excluded are tools and support equipment required for deployment and tensioning.

Concentrator membranes are used to reflect the sun onto the solar cell surfaces and obtain a nominal concentration ratio of 2 . The concentrator is made of ( $0.5-\mathrm{mil}$ ) aluminized Kapton. The membrane has a mass of $0.018 \mathrm{~kg} / \mathrm{m}^{2}$ and is mounted on the structure using attachments and tensioning devices. Excluded are tools and support equipment required for deployment.

The DDT\&E CER (CD) is based on thin sheet aluminum vendor data. The ICI CER for concentrators is based on Rockwell data for Type H Kapton material with an aluminized coating. As concentrator thickness decreases, cost per unit area decreases due to the diminished material requirements. However, at around 25 microns ( 1 mil), the cost reductions are cancelled by the increased difficulty of processing thin materials and the overall cost per unit area begins to rise. Rockwell data from Dupont indicates that the current cost of 0.5 mil concentrator for the SPS would be about $\$ 4.73$ per square meter. At increased demand and increased yields, cost could potentially reach $\$ 1.61$ per square meter. However, the most likely value, and the value on which the concentrator ICI CER is based, was quoted at $\$ 2.58$ per square meter. For the purposes of the CER this was rounded to $\$ 3.00$ per square meter to include sensors and mounting attachments and scaled at a slope of 0.95 to reflect anticipated large array economies.

Range of Data
DDT\&E: $100 \mathrm{M}^{2}-100,000 \mathrm{M}^{2}$
ICI: Unlimited
Input parameters $T \& M$ are in square meters, see Table 1.1.1.2.


### 1.1.1.3 SOLAR BLANKET

This element converts solar energy to electrical energy and provides power to the power distribution and conditioning buses. It includes the photovoltaic conversion cells, cover-plates, substrate, electrical interconnects, and any integral attach points required for mounting. Excluded are tools and support equipment required for deployment and tensioning.

Gallium aluminum arsenide (GaAlAs) cells have been selected. The cell consists of GaAs junction with a GaAlAs window, substrate, adhesive, current collectors, and an anti-reflective coating. The solar blanket consists of a Kapton membrane upon which the cells are fastened with a thermo-setting FEP adhesive. Also included in the blanket are the interconnects, thermal coating, attachments/tensioning devices, and sensors.

Historical cost data on solar arrays from previous satellite programs were readily available from the Redstar Data Base and were used to develop the CD CER. However, due to the rapidly changing technology, historical data is not applicable for use in estimating the SPS solar blanket production cost. The Department of Energy (DOE) has initiated the U.S. Photovoltaic Conversion Program. Two main objectives of this program are to develop by 1990 the technological and industrial capability to produce silicon solar arrays at a price of less than $\$ 500$ per peak $k W e$ and to establish by 2000 the viability of even lower-cost ( $\$ 100$ to $\$ 300$ per KWe ) and/or more efficient alternatives utilizing novel materials and devices. Since it is generally believed throughout the photovoltaic industry that low cost solar arrays are achievable and dependent on the demand for high production rates and since some progress toward meeting the DOE goal has already been made, it was decided to base the SPS solar array cost estimates on projected costs rather than historical costs.

The CD CER was based on solar array historical cost data from the following programs.

- Skylab (OWS)
- Skylab (ATM)
- FRUSA
- SEPS (Est.)

The cost of array structure and mechanisms was not included so that the data would be compatible with the SPS concept of on-orbit structure fabrication and assembly. Although there is a large difference in size between the above arrays and the SPS array, the SPS array will consist of a large number of smaller units. The development fraction (DF) was utilized to normalize the $C D$ cost to reflect cost of only that portion of the total solar array area required to develop the power system.

The initial capital investment CER (CI) cost estimate for material and production processing was based upon information contained in the Arthur D. Iittle report of March 1978 as prepared under Contract NAS9-15294 with NASA/ JSC. The materials cost of $\$ 33 / \mathrm{M}^{2}$ and a fabrication cost of $\$ 34 / \mathrm{M}^{2}$ total $\$ 67 / \mathrm{M}^{2}$ for a gallium arsenide solar cell array. This assessment is consistent with work completed under Rockwell company sponsored activity based on 1977 prices and assuming 1990 technology.

Range of Data:
DDT\&E: 10-300 square meters
ICI: Unlimited
Cost estimates are shown in Table 1.1.1.3.

ROCKWELL SPS CR-2 REFERENCE CONFIGURATION
TABLE 1.1.1.3 SOLAR BLANKETS


### 1.1.1.4 POWER DISTRIBUTION AND CONDITIONING (PD\&C)

This element includes the various power feeders, switching and conditioning equipments necessary to deliver power at the required voltage and power levels throughout the satellite. An energy storage system is included, as a power source, to supply minimium power to the various subsystems during eclipse periods. Data buses are not a part of this element as they are included in the information management and control subsystem (WBS No. 1.1.3).

The PD\&C system receives power from the solar photovoltaic power generation system and provides for the power conditioning and switching required to deliver the power, through its distribution network, to the satellite power transmission system. Electrical power is transferred from the solar array distribution network through a rotary joint, utilizing slip rings and brushes, to the microwave antenna distribution and conditioning system for the delivery of power at the required levels. The life expectancy of the PD\&C is 30 years with the exception of the energy storage system (batteries), which is projected to have a life expectancy of 15 years.

### 1.1.1.4.1 Switches and Converters

Switches will be used to perform various functions and will be monitored and controlled through the IMCS. Switchgears will:

- Isolate solar array blankets for maintenance work
- Provide voltage regulation of solar array output by selective switching of isolation switchgears
- Control voltage and currents through the IMCS system for short circuit protection
- Prevention of large line transients
- Systematic start-up and shut-down of array during eclipse periods
- Control various loads

The primary switches will be of the Penning cross-field tube design. Functions controlled by these switches will be monitored by the IMCS to determine their status and establish the opening or closing position as required. Basically, the switches are held in a closed state during the operational mode. During start-up and shut-down operations, switches will be monitored by the IMCS, and when certain voltage levels are reached, a command signal will open or close switches as needed.

The power converter and conditioners convert the existing bus voltages to the subsystem voltage required for the various subsystem loads. The output tolerances will be based on the using subsystem interface requirements. The power converters are utilized in the GEO mode of operation.

### 1.1.1.4.2 Conductors and Insulation.

Main feeders are generally sized to minimize the combined mass of itself and the solar array mass, considering power requirements, efficiency, and the variation in resistivity with operating temperature. The power distribution system utilizes flat aluminum (6101/T6) feeders where feasible, and round conductors for those subsystems where flat conductors are not feasible.

The CD CER was based on historical cost data obtained from the Redstar Data Base on the following satellite programs.

- DSCS-II
- ATS-A
- ATS-F - ATS-E
- OSO-I
- heao
- ATS-B

The ICI CER was based on preprocessed aluminum material cost data and the use of $6101 / T 6$ aluminum. Differential aluminum inflation between current prices and expected mid 1986 prices was included. Cost data was obtained from the following manufacturers:

- Reynolds Metals
- Alcoa Aluminum
- Amchem Products, Inc.
- The Yoder Company

Range of Data:

```
DDT&E: 20 to 150 kilograms
ICI: Unlimited
```


### 1.1.1.4.3 S1ip Rings

The slip ring portion of the rotary joint is included in the PD\&C of the Energy Conversion segment. The slip rings consist of an aluminum core with coin silver cladding on each slip ring. The core cross section is $33.7 \mathrm{~cm}^{2}$. The slip ring diameter is .3 km with a length of .94 km . Each slip ring weighs $10,715 \mathrm{~kg}$ with a total weight of $42,860 \mathrm{~kg}$ for the required 4 slip rings.

The cost data for the slip rings cost data are based upon large ground commercial and military slip rings. Since all but one of the base data slip rings were designed for ground application, it was decided that these data should not be used as a basis for estimating DDT\&E costs. It was determined that the data should be used only as a basis for estimating ICI production costs and then only after applying complexity and specification uprating factors. The following factors were applied:

Complexity Factor	$\times$
Specification Uprating Factor	
Total	

The ICI production cost CER was based on data provided by the following manufacturers.
Manufacturer
Poly-Scientific
Poly-Scientific
Electro-Tec
Electro-Tec
I.E.C.

Application<br>High energy Radar<br>Navy destroyer propeller system<br>Satellite solar array<br>Navy shipboard hoist

Due to the relatively low production rate of 1 to 5 units per year, the tooling factor is assumed to be 1.0 .

The DDT\&E cost was estimated with a CER developed for secondary structure which consisted of space qualified hardware of approximately the same complexity. See the discussion of the secondary structure CER.

Range of Data.

### 1.1.1.4.4 Batteries

Batteries will be utilized during ecliptic periods to provide minimum energy required by the energy conversion subsystems. The batteries will be of a sodium chloride design, having a density of at least 200 watt hours/kg.

The DDT\&E and the ICI CER's were developed using battery data from the manned/unmanned spacecraft list below:

- APOLLO Lunar Module
- ATS-F
- APOLLO Lunar Rover
- ATS-E
- HAWKEYE
- OSO-I

Range of Data:
DDT\&E: 1.0 to 180.0 kg
ICI: $\quad 1.0$ to 180.0 kg

### 1.1.1.4.5 Battery PD\&C

This element provides the mechanism for the charging of the satellite batteries and the distribution and regulation of power to and from the batteries. Included are the battery chargers, power regulators, power conditioning and power conditioning equipment which directly interface with the battery subsystem.

The DDT\&E and the ICI CER's were developed using data from the manned and unmanned spacecraft below:

- APOLLO Lunar Module
- GEMINI
- APOLLO Lunar Rover
- HAWKEYE
- ATS-E - OSO-I

Range of Data:
DDT\&E: 2.0 to 68.0 kg
ICI: 2.0 to 68.0 kg

### 1.1.1.4.6 PD\&C Cost Estimates

Cost calculations developed from the CER's discussed in the preceding paragraphs are presented in the following tables:

Table

## Description

1.1.1.4.1 Switch Gear and Converters
1.1.1.4.2 Conductors and Insulation
1.1.1.4.3 Slip Rings
1.1.1.4.4 Batteries
1.1.1.4.5 Battery PD\&C

ROCKWELL SPS CR-2 REFERENCE CONFIGURATION
TABLE 1.1.1.4.1 SWITCH GEAR \& CONVERTERS
INPUT PARAMETERS


CD=CDCER X (TX DFIXX(CDEXP) X CF
CLRM=CICER X (M)XX(CIEXP) X CF X TF 1.870

$\begin{array}{ll}C T F U=(C L R M / E) X(\# R M X 21+.5) X X(E)-0.5 \times X(E)) & 89.123\end{array}$

CTB $=(1 C L R M / E) \times($ (\#RM $X \quad 23+0.5) \times X(E)-0.5 \times X(E J) \quad 66.093$
CIPS=CTB*Z4年2
CRCI $=$ CTB $\times R$ 0.0
CCEM $=$ O\&M OR CTB*Z5/Z2/ENYR 0.0
COMMENTS

ROCKWELL SPS CR-2 REFERENCE CONFIGURATION
TABLE 1.1.1.4.2 CONDUCTORS \& INSULATION
INPUT PARAMETERS
INPUT COEFFICIENTS

$T=$	2367000.00	$T F=$	1.000000		CDCER $=$		0.158000
$M=$	19725.0000	OEM $=$	0.0		CDEXP=		0.297000
CF=	1.000000	Z1=	1.000000		CICER =		0.000004
$\mathrm{PHI}=$	1.000000	22=	60.000000		CIEXP=		1.000000
$R=$	0.0	$23=$	60.000000				
DF $=$	0.100000	$24=$	60.000000	25=		0.0	

CALCULATED VALUES KG SUM TO 1.1 .1 .4 S. MILLIONS
$C D=C D C E R \times(T \times D F) \times X(C D E X P) \times C F \ldots 6.234$
$\begin{array}{ll}\text { CLRM }=\text { CICER X (M)XXICIEXP) } X C F X ~ T F ~ & 0.079\end{array}$

$C T F U=(C L R M / E) X(\mathbb{R} M \times 21+.5) \times X(E)-0.5 \times \times(E))$
9.468


```
 ROCKWELL SPS CR-2 REFERENCE CONFIGURATION
```

            TABLE 1.1.1.4.3 SLIP RINGS
                                    INPUT PARAMETERS
    INPUTT COEFFICIENTS


ROCKWELL SPS CR-2 REFERENCE CONFIGURATION
TABLE 1.1.1.4.4 BATTERIES


ROCKWELL SPS CR-2 REFERENCE CONFIGURATION
TABLE 1.1.1.4.5 BATTERY PDEC

$T=$	2000.00000	TF=	0.043000	CDCER $=$	0.053000
M $=$	250.000000	O\&M $=$	0.0	COEXP $=$	0.890000
$\mathrm{CF}=$	1.000000	$21=$	1.000000	CICER=	0.012000
PHI $=$	0.950000	22=	60.000000	CIEXP=	0.859000
$\mathrm{R}=$	0.010000	Z3 $=$	60.000000		
$D F=$	0.500000	24=	60.000000		



### 1.1.1.5 THERMAL CONTROL

This element includes any component used to modify the temperature of the energy conversion subsystem components. It includes cold plates, heat transfer and radiator devices as well as insulation, thermal control coatings and finishes. Excluded are paints or finishes applied to components during their manufacturing sequence.

### 1.1.1.6 MAINTENANCE

This element provides for in-place repair or replacement of components and includes work stations, tracks, access ways, and in situ repair equipment.

The maintenance requirements of this element are related to the energy conversion section of the satellite covering the main structure, concentrators, solar blankets, and power distribution/conditioning. Some of the items of maintenance equipment will be commonly used on the satellite power transmission and interface segments. In these cases, the costs have been apportioned to the related WBS element. Maintenance requirements are listed in Table l.l.l.6 and costs are presented in Tables 1.1.1.6.1, 1.1.1.6.2 and 1.1.1.6.3.

Table 1.1.1.6 Maintenance Requirements

WBS NO.	MAINTENANCE ITEM   DESCRIPTION	1.1 .1 .6   ENERGY CONVERSION
1.1 .1 .6 .1	"Free-Flyers" or Barge for   Cargo and Personnel   (Common Use Item)	0.8 Vehicle   Utilization
1.1 .1 .6 .2	Manned Manipulator Module	1 Vehicle
1.1 .1 .6 .3	Tracks and Access Ways	$84,000 \mathrm{~kg}$

## ROCKWELL SPS CR-2 REFERENCE CONFIGURATION

 table 1.1.1.6.1 MAINTENANCE - FREE FLYERS

ROCKWELL SPS CR-2 REFERENCE CONFIGURATION
TABLE 1.1.1.6.2 MANNED MANIPULATOR
INPUT PARAMETERS
INPUT COEFFICIENTS

$T=$	3000.00000	TF=	1.000000		CDCER $=$	0.0
$M=$	3000.00000	O6M $=$	0.0		CDEXP =	0.0
C F =	1.100000	Z1 $=$	1.000000		CICER=	0.005798
PHI=	0.950000	22=	60.000000		CIEXP=	1.000000
$\mathrm{R}=$	0.020000	$23=$	60.000000			
$D F=$	1.000000	$24=$	60.000000	$25=$		

CALCULATED VALUES KG SUM TO 1.1 .1 .6
\$,MILLIONS
$\begin{array}{ll}C D=C D C E R X(T X D F I X X(C D E X P) X C F & 0.0\end{array}$
CLRM $=$ CICER $X$ (M)XXICIEXP) X CF X TF
19.133


TABLE 1.1.1.6.3 TRACKS \& ACCESS WAYS
INPUT PARAMETERS
INPUT COEFFICIENTS


### 1.1.2 MW POWER TRANSMISSION

This element receives dc electrical power from the interface subsystem, conditions the power, converts it to microwave energy and radiates the energy to the ground receiving station. Included are power distribution from the interface subsystem, dc to RF conversion devices, control and monitoring equipment, and antenna radiating elements.

Costs in this section include those of the antenna structure and subarrays with their klystrons; the power distribution and conditioning system; thermal control; phase reference system; and maintenance requirements. The MW antenna system is illustrated in Figure 1.1-2 and illustrates the basic configuration, including overall dimensions of the selected antenna structure concept.


Figure 1.1-2. Microwave Transmission System

- Satellite Antenna

The smallest antenna building block is the power module, which varies in size from the one illustrated (which is used at the center portion of the antenna) to 3.40 by 5.82 meters at the periphery of the antenna. Ten different power module sizes are used to comprise the antenna element. Each power module has a klystron located in its center. The power modules are arranged into subarrays measuring 10.2 by 11.64 meters. Each subarray has its own phase control electronics. Nine subarrays are connected to form a mechanical module 30.82 by 34.92 meters.

### 1.1.2.1 STRUCTURE

This element includes all members necessary to support the transmitter subarrays and other power transmission subsystem hardware. It includes structural beams, beam couplers, cables, tensioning devices, and secondary structures.

### 1.1.2.1.1 Primary Structure

This element includes the basic supporting framework of the microwave antenna power transmission system up to the interface connection. The antenna primary structure has three main components - a tension web made from composite wires or tapes; a catenary cable that transfers the web tension to the verticies; and the octogonal compression frame. The antenna frame provides a structural support but does not include the wave guides or radio frequency assemblies associated with the microwave subsystem.

This element is limited to primary load carrying structure and does not include other secondary structure such as equipment mounts, platforms, and space equipment supports.

The SPS requirement for low thermal distortion, under high thermal stress, dictates the need for a material with a very low coefficient of expansion. The most likely candidate, at this time, is a graphite composite material.

The antenna structure D\&D CER was developed using graphite composite data obtained from NASA's Redstar Data Base. Tooling cost was excluded under the assumption that this cost would be incurred in the development of orbital fabrication equipment. The following data points were used:

- Space Telescope Shell
- ATS-F Truss
- HEAO Optical Bench
- Shuttle Payload Bay Doors

The antenna structure ICI is the cost of raw materials only since the costs associated with fabrication and assembly are charged against orbital assembly and support equipment. The antenna structure ICI cost equation is based on raw composite material stock (prepregnated graphite) cost. These material costs are based on vendor quotes obtained from Hercules, Fiberrite and Union Carbide.

Range of Data:
D\&D: 30,0 to 2000.0 kg
ICI: UnIimited

### 1.1.2.1.2 Secondary Structure.

The secondary structure consists of the passive interface attachment between the primary structure and operational subsystems. The structural members are made of aluminum with the ability to articulate, rotate, or
otherwise support/allow motion between the primary structure and other subsystem elements.

This element includes all structure, consisting of mounting brackets, clamps and installation structure required as an interface and mounting attach points of components, assemblies, and subsystems. It also includes any structure required between two or more components or assemblies.

Development of the secondary structure CER for DDT\&E was based on cost contained in the MSFC Redstar Data Base. Data from a variety of launch vehicle and unmanned sate-lite programs were available and the applicable data points are listed below:

- S-IVB Interstage
- S-IC Forward Skirt
- S-IC Intertank
- Solar Telescope Housing Assembly (ASM)
- Common Mount Assembly (ASM)
- Telescope Gimbal Assembly (ASM)
- Common Mount Actuators (ASM)
- Telescope Gimbal Actuators (ASM)
- Array Platform Elevation Pointing Actuator (ASM)
- UV Gimbal Mount Actuators (ASM)
- UV Instrument Mount Assembly (ASM)

The ICI production cost CER was based upon an Engineering Cost estimate.
Range of Data:
DDT\&E: 6.0 to $15,000.0 \mathrm{~kg}$
ICI: $\quad 6.0$ to $15,000.0 \mathrm{~kg}$

### 1.1.2.1.3 Cost Estimates

Input parameters $T \& M$ are in kilograms of mass, see Tables 1.1.2.1.1 and 1.1.2.1.2.

ROCKWELL SPS CR-2 REFERENCE CONFIGURATION
TABLE 1.1.2.1.1 PRIMARY STRUCTURE
INPUT PARAMETERS INPUT COEFFICIENTS

$T=$	67000.0000	$T F=$	1.00000	CDCER $=$	0.023000
$M=$	8375.00000	$D E M=$	0.0	$C D E X P=$	0.800000
$P F=$	1.000000	$Z 1=$	1.000000	$C I C R=$	0.000050
$P H=$	1.000000	$Z 2=$	60.000000	$C I E X P=$	1.000000
$R=$	0.002000	$23=$	60.00000		
$D F=$	0.020000	$Z 4=$	60.000000	$Z 5=$	0.0

CALCULATED VALUES KG SUM TO 1.1.2.1 S.MILLIONS
$C D=C D C E R X(T X \operatorname{DF} X X(C D E X P) \times C F \ldots$.
$\begin{array}{ll}C L R M=C I C E R X(M) X X I C I E X P) X C F X T F & 0.419\end{array}$

\#RM $=T / \mathrm{M}$	8.000
$E=1.0+\operatorname{LOG}(\mathrm{PHI}) / \operatorname{LOG}(2.0)$	1.000

$\begin{array}{ll}C T F U=(C L R M / E) X(\# R M X Z 1+.5) X X(E)-0.5 X X(E)) & 3.350\end{array}$


COMMENTS

## ROCKWFLL SPS CR-2 REFERENCE CONFIGURATION

TABLE 1.1.2.1.2 SECONDARY STRUCTURE
INPUT PARAMETERS
INPUT COEFFICIENTS

$T=$	234000.000	TF=	0.007300		CDCER $=$	0.156000
M $=$	5.000000	0\&M =	0.0		CDEXP=	0.511000
$C F=$	1.000000	Z1=	1.000000		CICER=	0.101000
PHI $=$	0.980000	22=	60.000000		CI ExP=	0.355000
$R=$	0.002000	23=	60.000000			
DF=	0.050000	Z4=	60.000000	$25=$		

S,MILLIONS
$C D=C O C E R \times(T \times$ DF)XX(CDEXP) X CF 18.705
$\begin{array}{ll}\text { CLRM }=\text { CICER X (M)XXICIEXP) X CF X TF } & 0.001\end{array}$


### 1.1.2.2 TRANSMITTER SUBARRAY/KLYSTRONS

This element includes all the hardware required for generation, distribution, phase control and radiation of microwave energy. This includes the subarray structure, wave guides, power amplifiers, control devices, and power harnesses. Also included are thermal control devices and finishes that are manufactured as an integral part of the subarray.

RF generators convert the direct current (dc) electric power to RF microwave power. Klystrons are used in this system as the high power RF transmitting devices. Wave guides receive the $R F$ power from the generator and radiate it to the ground-based rectenna.

Historical data for some twenty phased array radars ranging over a period of the last twenty years were extracted from the Redstar Data Base and/or obtained from various contractors. The data were analyzed, normalized and the costs were adjusted to reflect 1977 dollars. In addition, for all costs utilized, the facility receiver subsystem hardware, data subsystem costs and basic facility/housing costs were removed.

The application of phased array radar costs to the development cost estimates of the microwave antenna was pertinent since the design and development of these physically large ground installations was conducted in much the same manner that is being utilized for the SPS. The ground array radiating elements were assembled in subarray panels, complete with the radiating elements, wave guide, and cabling. The subarrays were then mounted into the facility framework, subarray cabling, and plumbing connection completed at system level and confidence testing conducted. The same general assembly philosophy is expected to be followed for the microwave antenna, the difference being that the microwave antenna will be totally assembled in the space environment.

The D\&D CER was based on data from four DOD classified projects identified only as Projects 21, 22, 23, and 24 as well as the Cobra Dane, AN/SPS-48 and SAM-D (PATRIOT) radar systems.

A different approach was taken to develop the TFU CERs. After reviewing the various radar systems' cost, it was determined that not enough insight was afforded into the components; therefore, a "grass-roots" approach was undertaken.

For purposes of developing a "grass-roots" estimate for the TFU, a segment of the antenna measuring $2.4 \mathrm{~m}^{2}$ was assumed to be the Lowest Replaceable Unit (LRU). In addition, to arrive at an "average" LRU, it was necessary to evenly distribute all components over the antenna. Enclosed tables list the components and their estimated cost for both the klystron and amplitron configurations. The required components were determined through analysis. Letters and telephone calls were directed to hardware manufacturers requesting technical data and cost quotes for the specified components. Where multiple quotes were obtained, the average cost was used. In some instances, estimates had to be relied upon. It was further assumed that the components are the same in each configuration with only the power tubes changing with the exception of the klystron configuration where the IRF amplifier is different.

Data contained in the Redstar Data Base were utilized to develop integration factors which were added to the vendor quotes. To account for the cost associated with voltage measurement instrumentation for the microwave antenna, a $20 \%$ instrument factor was also applied to the vendor quotes. The individual cost estimates, developed for each type of power tube, were utilized to develop CERs based on the area of one LRU. For the purpose of developing these CERs, three different LRU sizes were assumed $-2.4 \mathrm{~m}^{2}, 24 \mathrm{~m}^{2}$, and $240 \mathrm{~m}^{2}$. It is necessary for the user to determine the size and number of LRUs required for any given antenna configuration. It is also necessary for the user to consider any learning that may occur.

## Range of Data:

D\&D: 1000 to 100,000 kilowatts
ICI: Unlimited
Table 1.1.2.2.1 expresses the DDT\&E cost estimate [ $\left.C_{D}=.067\left(P_{T}\right)^{0.507}(\mathrm{CF})\right]$ to facilitate the use of antenna power in kilowatts as the input factor. Table 1.1.2.2.2 shows the $C_{I, L R U}=.00327$ ( $A_{L R U}$ ) ${ }^{1} .000$ where $A$ is in square meters. A complexity factor of 1.25 is used to compensate for the klystron kilowatt power rating as used in the data base.

ROCKWELL SPS CR-2 REFERFNCE CONFIGURATION
TABLE 1.1.2.2.1 KLYSTRON DDTEE
INPUT PARAMETERS


CDMMENTS

ROCKWELL SPS CR-2 REFERENCE CONFIGURATION
TABLE 1.1.2.2.2 KLYSTRON ICI, R. O\&M
INPUT PARAMETERS INPUT COEFFICIENTS


### 1.1.2.3 POWER DISTRIBUTION AND CONDITIONING (PD\&C)

This element includes the various power feeders, switching, and conditioning equipment $s$ necessary to deliver power at the required voltage and power levels for the power transmission section (antenna portion) of the satellite. An energy storage system is included to supply power to keep the power transmission system at a ready state and for housekeeping requirements during eclipse periods. Data buses are not a part of this element as they are included in the information management and control subsystem (WBS No. 1.1.3).

The PD\&C system receives power from the interface (Energy Conversion/ Power Transmission) system and provides for the power conditioning and switching required to deliver the power, through the distribution network, to the microwave energy conversion units. On the rotating member, power is conducted through switch gears to dc/dc converters which output the six primary voltages required by the Klystrons. Each voltage is conducted to a summing bus, through switch gears and power feeders and on through switch gear at the mechanical modules for use at the subarrays to provide power at the 135,864 Klystrons.

Batteries and battery conditioning equipment are included also to provide the stored energy to power the heater requirements which keep the Klystrons at a ready mode during the eclipse periods. The batteries will also provide power for the necessary housekeeping activities, i.e., stationkeeping, IMCS, TT\&C, etc., during this period.

### 1.1.2.3.1 Switches and Power Conditioning-

Switches will be used to perform operational functions as monitored through the IMCS. Switch gears will:

- Isolate converters, main feeders, secondary feeders, mechanical modules, subarrays and Klystrons for maintenance work
- Provide split bus power feed to offer redundancy to some modules in event of failure of a converter or summing bus
- Control power through the IMCS for:
- short circuit protection
- systematic start-up and shut-downs to prevent surges during eclipse periods
- control various loads

The basic switches will be of the Penning cross-field tube design and monitored and controlled by the IMCS. The IMCS will will determine their status and functionally connect them to the proper feeder and summing bus as conditions may direct.

The power converter and conditioners convert the existing bus voltages to the subsystem voltage required for the various subsystem loads. The output tolerances will be based on using subsystem interface requirements. The power converters are utilized in the GEO mode of operation.

### 1.1.2.3.2 Conductors and Insulation

The summing buses, main feeders and secondary feeders are generally sized to minimize the combined mass of itself and the satellite mass, considering the power requirements, efficiency, and variation in resistivity with temperature. The PD\&C utilized aluminum (6101-T6) conductors.

### 1.1.2.3.3 Batteries

Batteries will be utilized during the ecliptic periods to provide minimum energy to keep the Klystrons warmed to a ready state and as necessary during the required housekeeping tasks. The batteries will be a sodium chloride type having the capability of providing 200 watt hours $/ \mathrm{kg}$.

The battery PD\&C costing is included in the earlier sections of 1.1.2.3.2 and 1.1.2.3.1. This element consists of the mechanisms for the charging of batteries and the distribution and regulation of power to and from the battery. This function will be monitored and controlled by the IMCS. Included are the battery chargers, power regulators, diodes, power regulators, and power conditioning equipment that directly interfaces with the battery system.

### 1.1.2.3.4 PD\&C Cost Estimates

The CER's used in this section are the same as those described in Section I.1.1.4. The following tables itemize the design/cost parameters and identify the cost estimates in each area.

Table

## Description

1.1.2.3.1 Switch Gear and Converters
1.1.2.3.2 Conductors and Insulation
1.1.2.3.3 Batteries

ROCKWELL SPS CR-2 REFFRENCE CONFIGURATION
TABLE 1.1.2.3.1 SWITCH GEAR \& CONVERTERS

INPUT PARAMETERS

CD=CDCER X IT X DFIXXICDEXPIX CF
CLRM=CICER X (MIXXICIEXP) X CF X TF 1.468

$C T F U=(C L R M / E) \times((\# R M \times 21+.5) \times X(E)-0.5 \times \times(E)) 752.336$
$C T B=(1 C L R M / E) X(\# R M X \quad 23+0.5 i \times X(E)-0.5 X X(E)) \quad 1 / 2312.556$

CRCI $=$ CTB $\times$ R $\quad 34.171$
COEM = O\&M OR CTB*Z5/Z2/ENYR 0.0

COMMENTS

ROCKWELL SPS CR-2 REFERENCE CONFIGURATION
TABLE 1.1.2.3.2 CONDUCTORS \& INSULATION

table 1.1.2.3.3 batteries
INPUT PARAMETERS
INPUT COEFFICIENTS


### 1.1.2.4 THERMAL CONTROL

This element includes any component used to modify the temperature of power transmission subsystem components. It includes cold plates, heat transfer and radiator devices as well as insulation, thermal control coatings and finishes. Excluded are paints and finishes applied to components during during their manufacturing sequence and thermal control devices that are an integral part of another component.

The multi-layer insulation panels are required for the back surface of the resonant cavity radiators to restrict waste heat leaks which could increase temperatures of electronics to unacceptable levels. This insulation is coated externally with low absorptivity/emissivity materials to limit the absorbed solar flux to which the surface is exposed during part of the orbit.

The insulation CER's are based upon secondary structure CER's where the secondary structure CER's were considered comparable to the requirements of insulation in its application on the antenna.

Table 1.1.2.4 presents cost estimates for thermal control.

## ROCKWELL SPS CR-2 REFERENCE CONFIGURATION

TABLE 1.1.2.4 THFRMAL CONTROL - INSULATION
INPUT PARAMETERS
INPUT COEFFICIENTS


### 1.1.2.5 CONTROL-PHASE REFERENCE

This element provides the reference phase for all subarray phase conjugating circuits and includes the reference oscillator signal distribution, and frequency conversion equipment. It covers components/equipment that commonly serve all subarrays.

The transmitted signal is formed from the pilot beam by means of the retroelectronics where one circuit is required per subarray. A servo system is needed to transfer the required reference phase from a central point to a mechanical module, where it is distributed to the nine subarrays. The main items included in this subsystem are shown in Table 1.1.2.5.

Table 1.1.2.5 Control-Phase Reference

WBS   NO.	ITEM/   DESCRIPTION	QUANTITY   PER SATELLITE
1.1 .2 .5 .1	REFERENCE FREQUENCY GENERATOR	I SET (777 POWER   AMPLIFIERS, $1-4$   REGULATORS)
1.1 .2 .5 .2	COAX CABLE   $1.1 .2 .5 .3 ~$DEVICES FOR USE ON FREQUENCY   DISTRIBUTION SYSTEM	777 SETS

Tables 1.1.2.5.1, 1.1.2.5.2 and 1.1.2.5.3 present the engineering estimates for these items.

ROCKWELL SPS CR-2 REFERENCE CONFIGURATION
TABLE 1.1.2.5.1 REFERFNCE FREQUENCY GENERATOR



ROCKWELL SPS CR-2 REFERENCE CONFIGURATION
TABLE 1.1.2.5.3 DIST. SYSTEM, DEVICES


### 1.1.2.6 MAINTENANCE

This element provides for in-place repair or replacement of components and includes work stations, tracks, access ways, and insitu repair equipment.

Maintenance requirements of this element are related to the power transmission (antenna) section of the satellite covering the structures; subarrays (Klystrons) ; power distribution/conditioning and energy storage; thermal control, and control elements. Some of the maintenance equipment are multipurpose and are therefore costed against the applicable maintenance items on an apportioned basis.

Maintenance requirements for this element are presented in Table l.l.2.6 and cost estimates are projected in Tables 1.1.2.6.1, 1.1.2.6.2, 1.1.2.6.3, and 1.1.2.6.4.

Table 1.1.2.6 Maintenance Requirements

WBS   NO.	MAINTENANCE ITEM DESCRIPTION	1.1.2.6 POWER TRANSMISSION
1.1.2.6.1	"FREE-FLYERS" OR BARGE FOR CARGO AND PERSONNEL (COMMON USE ITEM)	1 VEHICLE UTILIZATION
1.1.2.6.2	GANTRY CRANE AT ANTENNA	SET
1.1.2.6.3	ON-CRANE CONTROL CENTER, HOISTS, EQUIPMENT TEST GEAR, ROBOTICALS	SET
1.1.2.6.4	TRACKS AND ACCESSWAYS	12000 kg

ROCKWELL SPS CR-2 REFERENCE CONFIGURATION
table 1.1.2.6.1 MAINTENANCE - fREE FLYERS
INPUTPARAMETERS - INPUT COEFFICIENTS


ROCKWELL SPS CR-2 REFERENCE CONFIGURATION
TABLE 1.1.2.6.2 GANTRY CRANE
INPUT PARAMETERS


ROCKWELL SPS CR-2 REFERENCE CONFIGURATION
TABLE 1.1.2.6.3 ON-CRANE CONTROL CENTER


ROCKWELL SPS CR-2 REFERENCE CONFIGURATION
TABLE l.1.2.6.4 TRACKS \& ACCESS WAYS
INPUT PARAMETERS
INPUT COEFFICIENTS


### 1.1.3 INFORMATION MANAGEMENT AND CONTROL

This element includes those components that process information onboard the satellite. This includes sensing, signal conditioning, formatting, computations, and signal routing.

The information management and control subsystem (IMCS) provides the interconnecting elements between and within all the various satellites and ground-based operational subsystems. The IMCS also provides operational control of both the satellite and ground systems as well as providing all subsystem processing support for all but very special functions.

The satellite IMCS consists of the on-board processing equipment [central processing units (CPU) and memories], the inter- and intra-subsystem data network (data buses), the man-machine interfaces (display/control), and intersystem communication links, including RF, but excepting those specifically provided for the control and transfer of primary power, and all elements provided to accommodate activities related to system security, safety, or any other operation necessary to the continuing operation of the SPS.

Because of the early stage of program analysis, only those requirements imposed upon the IMCS by a limited number of satellite operations have been identified. The identified requirements generally are limited to those associated with the immediate operations of an active satellite. Auxiliary functions such as ground/space communications, display/control, safety, security, etc., will be added when data become available.

The usage and application of IMCS items is identified in Table 1.1-3 and provides direct association with the subsystem functions.

Table 1.1-3. Usage/Application Matrix per Satellite


These items have been separated into general hardware groups for costing purposes.

## COMPUTERS

Historical cost data were obtained for computers from the Redstar Data Base system and are listed below:

- Gemini-3 - Viking Lander
- Minuteman - MOL
- Skylab - HEAO

A $50 \%$ integration factor was included in the DDT\&E CER's to allow for subsystem level costs.

Range of Data:
DDT\&E and ICI: 1.8 to 75.7 kilograms

## ELECTRONIC COMPONENTS

The electronic components associated with Avionics include the Submultiplexors, Remote Acquisition Units, Microprocessors, Bus Control Units and instrumentation.

Development of an electronic components CER was based on the selected components of the ATS-F and OSO-8 spacecraft. These 19 electronic components are listed below:

ATS-F
Aux. Digital Sun Sensors
Monopulse Unit
Wide Band Data Unit
C Band Data Unit
S/L Band Transmitter
VHF Receiver
Command Decoder
Data Acq. \& Control Unit
Data Switching Unit

OSO-8
Solar Power Supply
Power Supply
Control Decoder/Demodulator
Remote Decoder
PCM Decoder
Format Generator
Wheel Clock
Sail Clock
S Band Transmitter
VHF Transmitter

Range of Data:
DDT\&E and ICI: 1.1 to 19.6 kilograms

## DATA BUS

This element consists of both copper wire and fiber optics. Historical cost data were obtained from the Redstar Data Base to produce the data bus DDT\&E CER. Commercial prices were used for the data bus ICI CER.

Production cost information obtained from private industry for "off-theshelf" fiber optics and copper wire are listed below:

FIBER OPTICS:

Manufacturer	Type	Characteristics	Cost per Meter
ITT Electro-Optical	GG-02	Single Fiber	( $1-10 \mathrm{~km}$ )
Products Division		50 m Dia.	\$3.25
	GS-02	Single Fiber 50 m Dia.	\$2.50
Valtec Fiberoptics	MG-05	Single Fiber	\$2.50
Division		65 m Dia.	
Galileo Electro-	-	Single Fiber	\$1. 58
Optics Corporation		88 m Dia.	
	Average cost per meter		\$2.40

One industry spokesman estimates that the cost of optical fibers.would likely decrease to $40 \%$ by 1980 . This study assumes a $\$ 2.40$ per meter average price reduced by $40 \%$ to $\$ 1.44$ per meter.

COPPER WIRE:

Manufacturer	Characteristics	Cost per Meter
Dearborn Wire \& Cable	22 gage stranded silver plate	\$0.807
Standard Wire \& Cable	22 gage stranded silver plate	\$0.705
Karen, Inc.	22 gage, 2 conductor silver plate	\$0.807
Mil-Spec Wire \& Cable Corporation	$\begin{aligned} & 22 \text { gage, 19-30 } \\ & \text { stranded } \end{aligned}$	\$0.610
	ost per meter	\$0.732
Instrumentation input parameters T\&M are in kilograms.		
Cost estimates for the items of Table $1.1-3$ are presented in Tables 1.1.3.1ugh 1.1.3.11 inclusive.		

table 1.1.3.1 MASTER CONTROL COMPUTER


ROCKWELL SPS CR-2 REFERENCE CONFIGURATION
TABLE 1.1.3.2 DISPLAYS \& CONTROLS


## ROCKWELL SPS CR-2 REFERENCE CONFIGURATION

TABLE 1.1.3.3 SUPERVISORY COMPUTER
INPUT PARAMETERS
INPUT COEFFICIENTS


ROCKWELL SPS CR-2 REFERENCE CONFIGURATION
TABLE 1.1.3.4 REMOTE COMPUTER


ROCKWFLL SPS CR-2 REFERENCE CDNFIGURATION
TABLE 1.1.3.5 BUS CONTROL UNIT


ROCKWELL SPS CR-2 REFERENCE CONFIGURATION
TABLE 1.1.3.6 MICROPROCESSORS
INPUT PARAMETERS
INPUT COEFFICIENTS

$T=$	3960.00000	TF=	0.078000		CDCER $=$	0.102000
$M=$	5.000000	O\&M $=$	0.0		CDEXP $=$	0.879000
CF=	1.000000	$21=$	1.000000		CICER =	0.069000
PHI $=$	0.950000	22=	60.000000		CIEXP=	0.557000
$\mathrm{R}=$	0.010000	$23=$	60.000000			
DF=	0.001300	24=	60.000000	$15=$		

CALCULATED VALUES KG SUM TO 1.1 .3 \$, MILLIONS

$\begin{array}{ll}C L R M=C I C E R X(M) X X(C I E X P) X C F X T F & 0.013\end{array}$

$C T F U=(C L R M / E) \times((\# R M \times 21+.5) \times X(E)-0.5 \times \times(E)) 6.881$


```
ROCKWELL SPS CR-2 REFERENCE CONFIGURATION
```

TABLE 1.1.3.7 REMOTE ACQUISITION E CONTROL
INPUT PARAMETERS

$T=$	4925.00000	TF=	0.069000	CDCER =	0.102000
$M=$	5.000000	OEM $=$	0.0	CDEXP =	0.879000
$C \mathrm{~F}=$	1.000000	Z1 $=$	1.000000	CICER=	0.069000
PHI $=$	0.950000	$22=$	60.000000	CIEXP=	0.557000
$\mathrm{R}=$	0.010000	23	60.000000		
$D F=$	0.001000	24=	60.000000		

CALCULATED VALUES KG SUM TO 1.1 .3 \$, KILLIDNS

CD=CDCER X (T X DFIXX(CDEXP) X CF
CLRM=CICER X (M)XX(CIEXP) X CF X TF 0.012


ROCKWELL SPS CR-2 REFERENCE CONFIGURATION
TABLE 1.1.3.8 SUBMULTIPLEXORS
INPUT PARAMETERS
INPUT COEFFICIENTS

$T=$	93000.0000	$T F=$	0.022000		CDCER $=$	0.102000
$M=$	3.000000	O\&M=	0.0		COEXP=	0.879000
CFF	1.000000	21=	1.000000		CICER=	0.069000
PHI $=$	0.980000	22=	60.000000		CIEXP =	0.557000
$R=$	0.010000	$23=$	60.000000			
DF=	0.000032	24=	60.000000	$25=$		


CALCULATED VALUES KG	SUM TO 1.1.3	\$,MILLIONS
CD=CDCER X (T X DFIXX(CDEXP) $\times$ CF		0.266
CLRM $=$ CICER $\times$ (MIXX(CIEXP) $\times$ CF $\times$ TF		0.003 -


$C T F U=(C L R M / E) X(\# R M \times 2 I+.5) \times X(E)-0.5 \times X(E))$ 66.119


```
ROCKWELL SPS CR-2 REFERENCE CONFIGURATION
```

TABLE 1.1.3.9 INSTRUMENTATION
INPUT PARAMETERS INPUT COEFFICIENTS


ROCKWELL SPS CR-2 REFERENCE CONFIGURATION
TABLE 1.1.3.10 OPTICAL FIBER
INPUT PARAMETERS
INPUT CDEFFICIENTS

$T=$	62.000000	$\mathrm{T}=$	1.000000		CDCER $=$	0.237000	
$M=$	62.000000	OEM	0.0		COEXP $=$	0.297000	
$C F=$	1.000000	$21=$	1.000000		CICER =	0.010219	
PHI $=$	0.980000	22=	60.000000		CIEXP $=$	1.000000	
$R=$	0.010000	23	60.000000				
$D F=$	1.000000	24=	60.000000	$25=$			

CÁLCULATED VALUÉS KG SUM TO 1.1 .3 S. MILLIONS

$\begin{array}{ll}C L R M=C I C E R X(M) X X(C I E X P) \times C F X T F & 0.634\end{array}$

| $\# \overline{R M}=T / M$ | 1.000 |
| :--- | :--- | :--- |
| 1 | 0.971 |

$C T F U=(C L R M / E) \times((\# R M \times Z 1+.5) \times X(E)-0.5 \times X(E)) 0.634$


TABLE 1.1.3.11 CABLES/HARNESS

INPUT PARAMETERS


### 1.1.4 ATTITUDE CONTROL AND STATIONKEEPING

This element includes the components required to orient and maintain the satellite's position and attitude in geosynchronous orbit. . Included are sensors, reaction wheels, chemical and electric propulsion hardware and propellants.

The baseline ACSS features an argon ion bombardment thruster RCS whose characteristics are:

- Thrusters located in 4 modules at each corner of the satellite
- Each module has 16 thrusters
- Cryogenic propellant storage-electric refrigeration with heat loss makeup
- Hemispherical plume characteristics
- Serviceable in place

The system operates on an average of 36 thrusters. A total of 64 thrusters are included to provide the required redundancy. The redundancy was based on an annual maintenance/servicing interval, 5000 hour thruster grid lifetime and 5-year thruster MTBF. Sixteen thrusters are located on the lower portion of each corner of the spacecraft. Each thruster is gimbaled individually to facilitate thruster servicing, to permit operation of adjacent thrusters during servicing, and to provide the redundancy. The thrusters nominally provide a force approximately in the direction of the sun to counter the solar pressure force (stationkeeping) which is the dominant thruster requirement. The thrusters are gimbaled through small angles (as illustrated) and differentially throttled to provide the remaining forces and torques for attitude control and stationkeeping.

Sensors that make up the attitude reference determination system include:

- CDD Sun Sensor (1/System)
- CCD Star Sensors (2/Systems)
- Electrostatic or laser gyros (3/System)
- Dedicated mini processor

The attitude reference determination system features Charge Coupled Device (CCD), star and sun sensors as well as electrostatic or laser gyros and dedicated microprocessors. Seven attitude reference determination units are located at various locations on the satellite in order to sense thermal and dynamic body bending, and to desensitize the system to these disturbances. The control algorithms will feature statistical estimators for determining principal axis. orientation, body bending state observers or estimators, and a quasi-linear propulsion thrust command policy to provide precise control and minimize. structural bending excitation.

The mass properties of the ACSS are summarized in Table 1.1-4. This summary includes the mass of individual elements and propellant weight on an annual basis.

Table 1.1-4. ACSS Mass Summary

ITEM	MASS   $(\times 10+3 \mathrm{KG})$
-ATITUDE REFERENCE DETERMINATION SYSTEMS (7)	0.32
THRUSTERS-INCLUDING SUPPORT STRUCTURE,   64 © LZO KG/THRUSIER	7.68
THRUSTER GIMBALS AND MOUNTING	3.98
TANKS, LINES, REFRIGERATION	15.07
POWER PROCESSING EQUIPMENT	88.95
TOTAL (DRY)	116.00
ARGON PROPELLANT-ANNUAL REQUIREMENT	85.39
TOTAL IWITH PROPELLANT	201.39

Historical cost data were obtained from NASA's Redstar Data Base. Historical data relative to electrical propulsion is limited, consequently, study data have been utilized where necessary. Ion bombardment thrusters are Argon propellants with a low thrust but a significantly higher specific impulse, thus reducing propellant resupply cost.

Development of the propulsion subsystem CER's was based on the spacecraft programs listed below:

SEPS (Boeing) Study ATS-F. (Ion Experiment)
SEPS (Rockwell) Study
Rockwell SPS Study
SERT-II
SERT-C Study
Range of Data:
DDT\&E and ICI: 18.0 to $107,500.0 \mathrm{~kg}$
Input parameters T\&M are in kilograms.
Tables 1.1.4.1 and 1.1 .4 .2 contain the costs for this element.

```
 ROCKWELL SPS CR-2 REFERENCE CONFIGURATION
```

TABLE 1.1.4.1 ACSS HARDWARE
INPUT PARAMETERS
INPUT COĒFFICIENTS



COMMENTS

ROCKWFLL SPS CR-2 REFERENCE CONFIGURATION
TABLE 1.1.4.2 ACSS PROPELLANT
INPUT PARAMETERS INPUT COEFFICIENTS

	$T=$	1.000000	T $F=$	1.000000		CDCER $=$	0.0
	$M=$	1.000000	O\&M=	0.085390		CDEXP=	0.0
	$C \mathrm{~F}=$	1.000000	Z1 =	1.000000		CICER =	0.0
	PHI $=$	1.000000	22=	60.000000		CIEXP=	0.0
	$\hat{R}=$	0.0	23=	60.000000			
	$D F=$	1.000000	24=	60.000000	25 =		

CALCULATED VALUES
SUM TO 1.L.4
\$,MILLIONS

CLRM=CICER $X(M) X X(C I E X P) X C F X T F \quad 0.0$


## Satellite Systems Division

 Space Systems Group
### 1.1.5 COMMUNICATIONS

This element includes the hardware to transmit and receive intelligence among the various SPS elements. It includes communication of both data and voice between the SPS and the control center, as well as among the various cargo and personnel vehicles. Excluded is intravehicular and intrasatellite communications.

### 1.1.6 INTERFACE (ENERGY CONVERSION/POWER TRANSMISSION)

This element provides the movable interface between the energy conversion subsystem and the power transmission subsystem. A $360^{\circ}$ rotary joint and an antenna elevation mechanism are required to maintain proper alignment of the transmitter with the ground receiving station. Included are structure, mechanisms, power distribution, and maintenance hardware.

The interface is utilized to 1) transfer energy from the slip ring to the antenna via transmission brushes, and 2) act as the structural support member between the main satellite and the antenna. The elements of this movable interface (Figure 1.1-6) are described in the following subsections.


Figure 1.1-6. Energy Conversion/Power
Transmission Interface

### 1.1.6.1 STRUCTURE

This element includes all members necessary to provide a mechanical interface between the primary structures of the energy conversion subsystem and the power transmission subsystem. It includes beams, beam couplers, cables, tensioning devices, and secondary structures. Excluded are elements of the drive assembly which are included in mechanisms (WBS No. 1.1.6.2).

### 1.1.6.1.1 Primary Structure

The basic supporting structure of the movable interface is included in this element. It is the primary load carrying structure and does not include the secondary structure that is required to support transmission buses or equipment.

The SPS requirement for low thermal distortion, under high thermal stress, dictates the need for a material with a very low coefficient of expansion. The most likely candidate, at this time, is a graphite composite material.

The interface primary structure D\&D CER was developed using graphite composite data obtained from NASA's Redstar Data Base. Tooling cost was excluded under the assumption that this cost would be incurred in the development of orbital fabrication equipment. The following data points were used:

- Space Telescope Shell
- ATS-F Truss
- HEAO Optical Bench
- Shuttle Payload Bay Doors

The interface structure ICI is the cost of raw materials only since the costs associated with fabrication and assembly are charged against orbital assembly and support equipment. The structure ICI cost equation is based on raw composite material stock (prepregnated graphite) cost. These material costs are based on vendor quotes obtained from Hercules, Fiberrite and Union Carbide.

Range of Data:
D\&D: 30.0 to 2000.0 kg
ICI: Unlimited

### 1.1.6.1.2 Secondary Structure.

The secondary structure consists of the passive interface attachment between the primary structure and operational subsystems. The structural members are made of aluminum with the ability to articulate, rotate, or otherwise support/allow motion between the primary structure and other subsystem elements.

This element includes all structure, consisting of mounting brackets, clamps and installation structure required as an interface and mounting attach
points of components, assemblies, and subsystems. It also includes any structure required between two or more components or assemblies.

Development of the secondary structure CER for DDT\&E was based on cost data contained in the MSFC Redstar Data Base. Data from a variety of launch vehicle and unmanned satellite programs were available and the applicable data points are listed below:

- S-IVB Interstage
- S-IC Forward Skirt
- S-IC Intertank
- Solar Telescope Housing Assembly (ASM)
- Common Mount Assembly (ASM)
- Telescope Gimbal Assembly (ASM)
- Common Mount Actuators (ASM)
- Telescope Gimbal Actuators (ASM)
- Array Platform Elevation Pointing Actuator (ASM)
- UV Gimbal Mount Actuators (ASM)
- UV Instrument Mount Assembly (ASM)

The ICI production cost CER was based upon an Engineering Cost estimate.
Range of Data:

$$
\begin{array}{ll}
\text { DDT\&E: } & 6.0 \text { to } 15,000.0 \mathrm{~kg} \\
\text { ICI: } & 6.0 \text { to } 15,000.0 \mathrm{~kg}
\end{array}
$$

Input parameters T\&M are in kilograms of mass.

### 1.1.6.1.3 Cost Estimates

Primary and secondary structure costs are presented in Table l.1.6.1.1 and 1.1.6.1.2 respectively.

- Solar Array and Boom Structure (ATS-F)
- Squib Interface Unit (ATS-F)
- Interstage (Centaur)
- Nose Shroud (Centaur)
- Fixed Airlock Shroud (Skylab)
- Payload Shroud (Skylab)
- Pallet Segment (Spacelab)
- OSO-1
- ATS-F
- S-II
(AN)
and.1.6.1.2 respectively.

ROCKWELL SPS CR-2 REFERENCE CONFIGURATION
TABLE 1.1.6.1.1 PRIMARY STRUCTURE
INPUT PARAMETERS INPUT COEFFICIENTS


CALCULATED VALUES KG SUM TO 1.1.6.1
\$,MILLIONS

$\begin{array}{ll}\text { CLRM }=\text { CICER } X(M) X X I C I E X P) \times C F X T F & 1.000\end{array}$


CTB $=($ (CLRM/E)X(I\#RMX $23+0.5) \times X(E)-0.5 X X(E)) \quad 6.000$
CIPS=CTB*Z4/Z2 6.000
CRCI $=$ CTB $\times R$ ——0.012
CCEM $=$ O\&M OR CTB*Z5/Z2/ENYR 0.0

COMMENTS

```
ROCKWELL SPS CR-2 REFERENCE CONFIGURATION
```

TABLE 1.1.6.1.2 SECONDARY STRUCTURE
INPUU' PARAMETERS INPUT COEFFICIENTS


### 1.1.6.2 MECHANISMS

This element includes the components required to rotate and elevate the power transmission subsystem. Included are the drive ring, bearings, gear drives, and drive motors.

The structural mechanisms consist of active structural subassemblies that articulate, rotate, or otherwise cause or allow motion between the primary structure and other subsystem elements or between subsystem elements themselves.

The ICI production cost CER was based on data provided by the following manufacturers:

Manufacturer
Poly-Scientific
Poly-Scientific
Electro-Tec
Electro-Tec
I.E.C.

Due to the difference in complexity and the specification requirements differences between ground and space qualified equipment, the following factors were applied.

Complexity Factor $\times 3$
Specification Uprating Factor
Total $\frac{\times 3}{\times 9}$

Range of Data:
DDT\&E: 6.0 to $15,000.0 \mathrm{~kg}$
ICI: $\quad 6.0$ to $15,000.0 \mathrm{~kg}$
Input parameters $T \& M$ are in kilograms of mass, see Table 1.1.6.2.

ROCKWELL SPS CR-2 REFERENCE CONFIGURATION
table 1.1.6.2 MECHANISMS - INTERFACE


### 1.1.6.3 POWER DISTRIBUTION

This element transmits the electrical power from the rotary joint to the microwave power transmission system. The PD\&C system consists of power risers which are coupled to the pickup shoebrushes on the rotary joint and routed on the antenna support yolk (interface) to the isolation switches on the antenna proper. There are two sets of slip rings. One positive and one negative, at the rotary joint. Sixteen brushes are needed per slip ring. The life expectancy of the $P D \& C$ is 30 years with calculated replacements of the slip ring.

### 1.1.6.3.1 Conductors and Insulation

The power risers are sized to minimize the mass of itself and the satellite mass, considering power requirements, efficiency and variation in resistivity with operating temperature. The power risers are made of multiple round aluminum (6101-T6) conductors with 1 mm kapton insulation.

### 1.1.6.3.2 Pickup Shoe Brushes

The pickup shoe brush portion of the rotary joint is included in the power distribution of the interface segment. Sixty-four pickup shoe brush assemblies are required per satellite. The brush material is $75 \% \mathrm{M}_{0} \mathrm{~S}_{2}$ and $25 \% \mathrm{M}_{0}$ tTa with a contact surface area per brush of $863 \mathrm{~cm}^{2}$. The shoe dimension is $2.72 \mathrm{~m} \times$ 12.7 am $\times 19$ am with a total weight of 11341 kg for 64 pickup shoe brushes.

### 1.1.6.3.3 Power Distribution Cost.Estimates-

The CER presented in section l.1.1.4.2 was used for the conductors and insulation. An extension of this CER was used for the brushes of section 1.1.6.3.2. The cost estimates for interface power distribution are presented in Tables 1.1.6.3.1 and 1.1.6.3.2.

INPUT PARAMETERS
INPUT COEFFICIENTS


ROCKWELL SPS CR-2 REFERENCE CONFIGURATION
TABLE 1.1.6.3.2 SLIP RING BRUSHES
INPUT PARAMETERS INPUT COEFFICIENTS


### 1.1.6.4 THERMAL CONTROL

This element includes any component used to modify the temperature of interface subsystem components. It includes cold plates, heat transfer and radiator devices as well as insulation, thermal control coatings and finishes. Excluded are paints or finishes applied to components during their manufacturing sequence. No thermal control requirements are defined for the interface.

### 1.1.6.5 MAINTENANCE

THis element provides for in-place repair or replacement of components and includes work stations, tracks, access ways, and insitu repair equipment.

Maintenance requirements are related to the equipment and facilities needed to transport men and material to the work station. Some of the same equipment required for maintenance at the site is used commonly in the performance of work at other sites. The CER's accommodate this usage. Table 1.1.6.5 identifies the requirements, and cost estimates are provided in Tables 1.1.6.5.1, 1.1.6.5.2, and 1.1.6.5.3.

Table 1.1.6.5 Maintenance Requirements

WBS   NO.	MAINTENANCE ITEM   DESCRIPTION	1.1 .6 .5   INTERFACE
1.1 .6 .5 .1	MFREE-FLYERS" OR BARGE FOR   CARGO AND PERSONNEL (COMMON   USE ITEM)	.2 VEHICLE UTILIZATION
1.1 .6 .5 .2	MANNED MANIPULATOR MODULE	1 VEHICLE   1.1 .6 .5 .3

ROCKWELL SPS CR-2 REFERENCE CONFIGURATION
table 1.1.6.5.1 maintenance - free flyers
INPUT PARAMETERS INPUT COEFFICIENTS


TABLE 1.1.6.5.2 MANNED MANIPULATOR
INPUT PARAMETERS

$T=$	3000.00000	T $F=$	1.000000		CDCER $=$	0.0
$M=$	3000.00000	$0 E_{M}=$	0.0		CDEXP =	0.0
$C F=$	1.100000	Z1=	1.000000		CICER=	0.005798
PHI $=$	0.950000	$22=$	60.000000		CIEXP=	1.000000
$R=$	0.020000	73=	60.000000			
$D F=$	1.000000	Z4 $=$	60.000000	$25=$		




ROCKWELL SPS CR-2 REFERENCE CONFIGURATION TABLE 1.1.6.5.3 TRACKS \& ACCESS WAYS

INPUT PARAMETERS


CD=CDCER X (T X DFIXX(CDEXP) X CF 0.0
CLRM=CICER X (MIXXICIEXP) X CF X TF 0.120


CTFU=(CLRM /E)X(I\#RMXZ1+.5)XX(E) $-0.5 \times X(E)) \quad 0.120$
$C T B=((C L R M / E) \times(\# R M X \quad 23+0.5) \times X(E)-0.5 \times X(E)) \quad 1 / 23 \quad 0.120$



CCEM = OEM OR CTB*Z5/ZZ/ENYR 0.0
COMMENTS

### 1.1.7 SYSTEMS TEST

This element includes the hardware, software, and activities required for ground-based systems test including qualification tests and other development tests involving two or more subsystems or assemblies. It includes the production, assembly, integration, and checkout of satellite system hardware into a full or partial system test article. It also includes the design, development, and manufacture of special test equipment, test fixtures, and test facilities that are not included in other elements such as ground support facilities. Also fncluded are the planning, documentation, and actual test operations.

Tables 1.1.7.1 and 1.1.7.2 document DDT\&E cost estimates respectively for hardware and operations based on individual calculations equal to $50 \%$ of the satellite ICI.

```
 ROCKWELL SPS CR-2 REFERENCE CONFIGURATION
```

TABLE 1.1.7.1 SYSTEM GROUND TEST HARDWARE
INPUT PARAMETERS

$T=$	0.0	$T F=$	1.000000		CDCER =	0.0
$M=$	0.0	OEM $=$	0.0		CDEXP =	0.0
$C F=$	0.0	$21=$	1.000000		CIEER=	0.0
PHI=	1.000000	22=	60.000000		CIEXP=	0.0
$R=$	0.0	Z3 $=$	60.00000			
$D F=$	1.000000	$24=$	60.000000	$25=$		

CALCULATEO VALUES SET SUM TO 1.1.7 $\quad$ S,MILLIONS

. CLRM=CICER X (M)XX(CIEXP) $\times$ CF $X$ TF 0.0

$\begin{array}{ll}C T F U=(C L R M / E) X(\# R M \times 21+.5) X X(E)-0.5 \times X(E)) & 0.0\end{array}$
$C T B=((C L R M / E) X(\# R M X \quad 23+0.5) \times X(E)-0.5 X X(E)) \quad 0.0$

CRCI $=$ CTB $X R \quad 0.0$
COEM = OEM OR CTB*Z5/Z2/ENYR 0.0
COMMENTS
DCTEE $=50 \%$ OF SATELLITE ICI

ROCKWELL SPS CR-2 REFERENCE CONFIGURATION
TABLE 1.1.7.2 SYSTEM GROUND TEST OPERATIONS
INPUT PARAMETERS INPUT COEFFICIENTS

$T=$	0.0	$T F=$	1.000000		CDCER =	0.0
M=	0.0	OEM $=$	0.0		CDEXP =	0.0
$C F=$	0.0	21=	1.000000		CICER=	0.0
PHI=	1.000000	22=	60.000000		CIEXP=	0.0
$R=$	0.0	23 $=$	60.000000			
DF=	1.000000	Z4=	60.000000	$25=$		



COMMENTS
DOTEE TEST OPS $=50 \%$ OF SATELLITE ICI

### 1.1.8 GROUND SUPPORT EQUIPMENT (GSE)

This element includes all ground-based hardware required in support of handling, servicing, test, and checkout of the satellite subsystems. It also includes special hardware required for simulations and training.

Costs for design, development, manufacture, acceptance, qualification, and maintenance of the GSE equipment are included. It is recognized that various equipments can serve multipurposes. For example, a developmental mockup may later serve as a training aid after it has served its original purposes. In these instances, the acquisition cost is charged to the original or first purpose use, and subsequent usage will incur only the recurring operations and maintenance costs.

GSE costs from several launch vehicle, manned spacecraft and unmanned satellites were analyzed to determine their applicability to SPS GSE requirements. From these data, a percentage factor was developed which was used to estimate SPS ground support equipment costs. This factor is expressed by the equation $C_{D}=0.10(C)$; where $C=D D T \& E$ cost of the satellite system. See Table 1.1.8.

TABLE L.1.8 GROUND SUPPORT EQUIPMENT


### 1.1.9 PRECURSOR TEST ARTICLE

The 335 MW pilot plant precursor test article and operations is included in this element. It represents the technology verification space system combining the energy conversion, finterface, and power transmission segments of the SPS satellite. The configuration will be constructed by the satellite construction base where the sequence is to build the slip ring/rotary joint housing structure followed by the interface hub and yoke base plus the lst bay of the solar array. Slip rings are installed and the solar concerter portion is completed as the yoke (interface) arms are fabricated. The antenna construction and maintenance platform is attached to provide facilities for the antenna fabrication and installation of required power modules. The completed EOTV/Demo unit is illustrated in Figure 1.1.9.


Figure I.l.9 EOTV Precursor Test Article

### 1.1.9.1 EOTV PRECURSOR VEHICLE

This element covers the vehicle procurement required to support the integrated test and demonstration program.

The energy conversion segment of the vehicle consists of primary and secondary structure, concentrators, solar blankets, switchgear and converters, conductors/insulation, attitude control and information management subsystems. The interface segment includes the primary and secondary structure, mechanisms, conductors/insulation and slip ring brushes.

The precursor power transmission segment will be representative of the full-up satellite antenna to the extent of using identically available components for the required power levels of the test article. It will include structures, transmitter subarrays, power distribution and conditioning, batteries, insulation, and phase control elements.

CER's used in this section are the same as those used in the particular elements of earlier satellite sections. DDT\&E is, however, a main cost item in these categories as the systems/subsystems will require substantial development activities, whereas the other satellite systems/subsystems will capitalize from this development work.

Cost estimates for the precursor test article are presented in the following tables:

Tables
1.1.9.1.1 thru 1.1.9.1.8
1.1.9.1.9 thru 1.1.9.1.13
1.1.9.1.14 thru 1.1.9.1.24

Segment
Energy Conversion
Interface
Power Transmission

ROCKWELL SPS CR-2 REFERENCE CONFIGURATION
TABLE 1.1.9.1.1 PRIMARY STRUCTURE - E.C.
INPUT PARAMETERS

$T=$	30890.0000	$T F=$	1.000000		CDCER $=$	0.023000
$M=$	2059.00000	O\&M=	0.0		CDEXP =	0.800000
$C F=$	1.000000	Z1=	1.000000		CICER =	0.000050
PHI $=$	1.000000	$22=$	60.000000		CIEXP =	1.000000
$R=$	0.0	23=	0.0			
DF=	1.000000	Z4 $=$	60.000000	$25=$		

CALCULATED VALUES KG SUM TO 1.1.9.1 S.MILLIONS
$C D=C D C E R \times(T \times D F) \times X(C D E X P) \times C F$
89.863

CLRM=CICER X (M)XX(CIEXP) X CF X TF
0.103


ROCKWELL SPS CR-2 REFERENCE CONFIGURATION
TABLE 1.1.9.1.2 SECONDARY STRUCTURE - E.C.
inpür parameters
INPUT COEFFICIENTS


TABLE 1.1.9.1.3 CONCENTRATOR - E.C.

INPUT PARAMETERS $\quad$ INPUT COEFFICIENTS


ROCKWELL SPS CR-2 REFERENCE CONFIGURATION
TABLE 1.1.9.1.4 SOLAR BLANKET -E.C.


ROCKWELL SPS CR-2 REFERENCE CONFIGURATION
TABLE 1.1.9.1.5 SHITCHGEAR \& CONVERTERS -E.C.

INPUT PARAMETERS

$T=$	2875.00000	$T F=$	1.000000		CDCER $=$		0.158000
$M=$	719.000000	OEM $=$	0.0		CDEXP=		0.297000
CF=	1.500000	Z1=	1.000000		CICER=		0.000400
PHI $=$	1.000000	22=	60.000000		CIEXP=		1.000000
$\mathrm{R}=$	0.0	$23=$	0.0				
$D F=$	3.000000	$24=$	60.000000	25 =		0.0	



COMMENTS

RDCKwELL SPS CR-2 REFERENCE CONFIGURATION
table 1.1.9.1.6 CONOUCTORS \& insulation - E.C.
inputi parameters
iñput coefficients



ROCKWELL SPS CR-2 REFFRENCE CONFIGURATION
TABLE 1.1.9.1.7 ACS HAROWARE - E.C.

INPUT PARAMETERS

$T=$	283557.000	$T F=$	0.300000		CDCER $=$	1.122000
$M=$	1970.00000	$0 \varepsilon M=$	0.0		CDEXP =	0.190000
$C \mathrm{~F}=$	1.000000	Z1=	1.000000		CICER =	0.057000
PHI $=$	1.000000	$22=$	60.000000		CIEXP=	0.729000
$\hat{R}=$	0.0	$23=$	0.0			
$D F=$	1.000000	24=	60.000000	$25=$		

S.MILLIONS

CD=CDCER X (T X DF)XX(CDEXP) X CF 12.190
CLRM $=$ CICER $X(M) X X(C I E X P) \times C F X T F$
4.312


COMMENTS

ROCKWELL SPS CR-2 REFERENCE CONFIGURATION
TABLE 1.1.9.1.8 SLIPRINGS - PRECURSOR
INPÏT PARAMETERS INPUT COEFFICİENTS

table 1.1.9.1.9 PRIMARY STRUCTURE - INTERFACE
INPUT PARAMETERS INPUT COEFFICIENTS


ROCKWELL SPS CR-2 REFERENCE CONFIGURATION
TABLE 1.1.9.1.10 SECONDARY STRUCTURE - INTERFACE
INPUT PARAMETERS
INPUT COEFFICIENTS


\#RM	$=T / M$
N	
N	E $1.0+\operatorname{LOG}(P H I) / \operatorname{LOG}(2.0)$

$C T F U=(C L R M / E I X(I \# R M X Z 1+.5) X X(E)-0.5 \times X(E)) 4.047$

CTB = (ICLRM/EJXI(\#RM X $23+0.5) \times X(E)-0.5 X X(E)) 1 / 2310.0$
CIPS=CTB*Z4/Z2 0.0
CRCI $=$ CTB $\times R \quad 0.0$

COEM $=$ OEM OR CTB*Z5/Z2/ENYR 0.0
COMMENTS

RDCKWELL SPS CR-2 REFERENCE CONFIGURATION
TABLE 1.1.9.1.11 MECHANISMS - INTERFACE
INPUT PARAMETERS
INPUT COEFFICIENTS


ROCKWELL SPS CR-2 REFERENCE CONFIGURATION TABLE 1.1.9.1.12 CONDUCTORS \& INSULATION
infut parameters
INPUT COEFFICIENTS




ROCKWELL SPS CR-2 REFERENCE CONFIGURATION
TABLE 1.1.9.1.13 SLIPRING BRUSHES - PRECURSOR


COMMENTS

ROCKWELL SPS CR-2 REFERENCE CONFIGURATION
TABLE 1.1.9.1.14 PRIMARY STRUCTURE - POWER TRANS
INPUT PARAMETERS
INPUT COEFFICIENTS


ROCKWELL SPS CR-2 REFERENCE CONFIGURATION
TABLE 1.1.9.1.15 SECONDARY STRUCTURE - POWER TRANS
INPUT PARAMETERS $\quad$ INPUT COEFFICIENTS


INPUT PARAMETERS

$T=$	34617.0000	$T F=$	1.000000		CDCER $=$	0.0
$M=$	118.800003	OEM $=$	0.0		CDEXP =	0.0
$C F=$	1.250000	Z1=	1.000000		CICER=	0.003270
PHI=	1.000000	$22=$	60.000000		CIEXP=	1.000000
$\overline{\mathrm{R}}=$	0.0	$23=$	0.0			
DF=	1.000000	$24=$	60.000000	$25=$		

\$,MILLIONS
$C D=C D C E R \times(T \times D F) \times(C D E X P) \times C F \quad 0.0$
$\begin{array}{ll}\text { CLRM }=\text { CICER X (M)XXICIEXP) X CF X TF } & 0.486\end{array}$
$C T F U=(C L R M / E) X(\# R M \times 21+.5) \times X(E)-0.5 \times X(E))$
141.497


COMMENTS

## input parameters

INPUT COEFFICIENTS


ROCKWELL SPS CR-2 REFERENCE CONFIGURATION
TABLE 1.1.9.1.18 CONDUCTORS E INSULATION - P.T. PRECURSOR

INPUTi PARAMETERS

$T=$	600.00.0000	TF=	1.000000		CDCER =	0.158000
$M=$	1720.00000	OEM $=$	0.0		CDEXP =	0.297000
$C F=$	1.000000	21=	1.000000		CICER=	0.000004
PHI $=$	1.000000	$22=$	60.000000		CIEXP=	1.000000
$R=$	0.0	$23=$	0.0			
$D F=$	1.000000	24 $=$	60.000000	$25=$		



ROCKWELL SPS CR-2 REFERENCE CONFIGURATION
TABLE 1.1.9.1.19 BATTERIES - P.T. PRECURSOR
INPUT PARAMETERS INPUT COEFFICIENTS


ROCKWELL SPS CR-2 REFERENCE CONFIGURATION
TABLE 1.1.9.1.20 ThERMAL CONTROL - INSULATION - PRECURSOR
INPUT PARAMETERS
INPUT COEFFICIENTS

$T=$	23200.0000	TF=	0.048000		CDCER $=$	0.156000
$\mathrm{N}=$	4.000000	OEM $=$	0.0		CDEXP =	0.511000
$C F=$	1.000000	21=	1.000000		CICER=	0.101000
PHI=	1.000000	Z2=	60.000000		CIEXP=	0.355000
$\mathrm{R}=$	0.0	$23=$	0.0			
DF $=$	1.000000	24=	60.000000	$25=$		

CALCULATED VALUES KG SUM TO 1.1.9.1 S.MILLIONS
CD=CDCER X $\mathbb{X}$ (T $\times$ DFIXX(CDEXP) $\times$ CF
26.539

CLRM=CICER X (M)XXICIEXP) XCF X TF
0.008


COMMENTS

ROCKWFLL SPS CR-2 REFERENCE CONFIGURATION
table 1.1.9.1.21 REFERENCE FREQUENCY GENERATOR - PRECURSOR




ROCKWELL SPS CR-2 REFFRENCE CONFIGURATION
TABLE 1.1.9.1.23 DIST. SYSTEM DEVICES
INPUT PARAMETERS INPUT COÉFFICIENTS


CD=CDCER X (TX DFIXXICDEXP! X CF 0.022
$\begin{array}{ll}\text { CLRM }=\text { CICER X }(M) X X(C I E X P) \times C F X T F & 0.010\end{array}$


ROCKWELL SPS CR-2 REFERENCE CONFIGURATION
table 1.1.9.1.24 TRANSMITTER SUBARRAYS - kLYSTRONS DDTEE
INPUT PARAMETERS
INPUT COEFFICIENTS


CALCULATED VALUES KW SUM TO 1.1 .9 .1 S, MILLIONS
CD=CDCER X $1 T \times$ PF!XXICDEXP! $\times$ CF 148.707
$\begin{array}{ll}C L R M=C I C E R X(M) X X(C I E X P) X C F X T F & 0.0\end{array}$


CTFU=(CLRM / EIXI(\#RMXZ1+.5)XX(E) $-0.5 \times X(E)) \quad 0.0$


COMMENTS

### 1.1.9.2 EOTV PRECURSOR OPERATIONS

This element includes the necessary vehicle operations (user charge per flight including payload integration required to support the precursor test activity.

Cost estimates are presented in Table 1.1.9.2.

```
ROCKWELL SPS CR-2 REFERENCE CONFIGURATION
```

TABLE 1.1.9.2 COTV PRECURSOR OPERATIONS


### 1.2 SPACE CONSTRUCTION AND SUPPORT

This element includes all hardware and activities required to assemble, checkout, operate, and maintain the satellite system. Included are space stations, construction facilities, support facilities and equipment, and manpower operations.

The Rockwell reference configuration is used as a baseline for the development of a satellite construction scenario and construction systems/equipment. Precursor operations incident to the establishment of orbital support facilities were identified and the satellite construction sequences and procedures were developed.

The overall scenario leading to establishment of satellite construction support facilities and to satellite construction is shown in Figure 1.2-1. Initial operations entail use of the growth shuttle and the shuttle derived HLLV for transporting men and material to LEO for the precursor phase of the program. Subsequently, during the 30 year satellite construction phase, the sps HLLV will become the primary transportation element for delivering construction mass to LEO and the shuttle HLLV will be used for personnel transfer to LEO.


Figure 1.2-1. Overall Satellite Construction Scenario
The initial step in satellite precursor operations is establishment of a LEO base as shown in the lower left of the figure. Crew and power modules are transported to LEO by shuttle derivatives and assembled. When the base is fully operational, shuttle external tanks are delivered and mated to form
construction fixtures for the Satellite Construction Base (SCB) construction. The figure shows a completed SCB. Since the more economical SPS HLLV will not be available during this phase of the program, and since overall plans specify an EOTV test article, it is possible that only the center section of the SCB would be constructed initially. This trough would be used to fabricate the pilot plant EOTV test article with an end-mounted antenna. After proof of concept, the remainder of the $S C B$ would be completed along with sufficient EOTVs to support initial satellite construction operations. The SCB will then be transferred to GEO, using one or more EOIVs for propulsion and attitude control. Upon reaching GEO, satellite construction would commence, with the logistics support as shown at the right of the figure.

The energy conversion segment of the satellite structure is constructed by the integrated $S C B$ in a single pass. Satellite longerons of a length sufficient to connect the triangular frames of the slip ring support structure are fabricated, followed by construction of the slip ring interface structure, and the first satellite structure frame. The SCB then proceeds to fabricate/ install the remainder of the satellite structure and solar converter. Construction of the slip rings, and yoke (interface) takes place concurrently using free flying fabrication facilities to support this building process (Figure 1.2-2).


Figure 1.2-2. Antenna Supporting Structure Assembly Sequence
This section addresses the facilities/equipment, and operations required to support SPS work, crew, and operational requirements during the SPS program. Section 1.2.1 deals with the construction facilities; and Section l.2.2 deals with the work and crew requirements at LEO. Section I. 2.3 covers the requirements in GEO to support operations and maintenance of the satellite.

### 1.2.1 CONSTRUCTION FACILITIES

This element includes the facilities, equipment, and operations required to assemble and checkout the satellite system. Included are crew life support facilities, the central control facility, fabrication and assembly facilities, cargo depots, and operations.

The satellites are constructed in GEO, each satellite being constructed at its designated longitudinal location. The SCB supports construction of two satellites per year during the program and serves as headquarters for operations and activities necessary to construct such items as the satellite, antenna interface, antenna, and EOTV. The SCB is constructed of composites and consists of the fabrication fixture, construction equipment, and base support facilities.

The construction fixture is in the form of three troughs, corresponding to the satellite configuration, which permits simultaneous construction of all troughs. Additional structural members are located in the middle trough and are used as support for the rotary joint/antenna structure. Figure 1.2-3 illustrates the construction base and shows the location of work and crew facilities.

The SCB fabrication fixture assembly and support equipment, and the crew/ work modules on the base are itemized in Table 1.2.1. SCB modules used to support the crew/work activities are of various internal configurations to accomodate specific functional requirements. All modules are of the same diameter and most are of the same length, their dimensions and mass being in compliance with space transportation system constraints. The modules are located on the fab fixture along with the assembly and support equipment.

The Airlock Docking Module (ADM) is used to join the other base modules to provide docking accommodations for other elements such as crew transport modules, consumables logistics modules (CLM) and intra-base logistics vehicles, and for transfer of personnel and equipment between different pressure environments. The Crew Habitability Module (CHM) provides stateroom and personal hygiene facilities, and support systems for 24 to 30 crew members. The Base Management Module (BMM) houses the operational communications and control systems for the base. Power Modules (PM) are photovoltaic power systems (collectors, converters, conditioners, and storage) which support all base power requirements. Pressurized Storage Modules (PSM) provide an area for storage and workshop accommodations. Shielding (SHD) is provided in selected modules to protect against solar flare radiation. The Crew Support Module (SM) provides the galley, recreational and medical facilities and support subsystems. Work support, crew, and operational requirements are discussed in the following paragraphs.

### 1.2.1.1 WORK SUPPORT FACILITIES - SCB

This element includes work facilities and equipment required for satellite assembly and checkout. Included are beam fabricators, manipulators, assembly jigs, installation and deployment equipment, and cargo storage depots. Excluded are the facilities related to crew support.


Fígure 1.2-3. Satellite Construction Base (SCB)

Table 1.2.1 Total Space Cunstruction and Support Equipment Requirements

$\begin{aligned} & \text { SYSTEM } \\ & \text { DESCRIPTION } \end{aligned}$	ABBREVIATION	SPACE COMSTRUCTION BASE		
		WORK SUPPORT FACILITIES	CREW SUPPORT FACILITIES	
BASE MODULES:				
AIRLOCK DOCKING MODULE CREW HABITABILITY MODULE CONSUMABLES LOGISTICS MODULE	ADM CHM CLM	17	5 17 9	
BASE MANAGEMENT MODULE	- BMM	4		
CREN SUPPORT MODULE/EVA	CSM/EYA			
POWER MODULE	PM	4		
PRESSURIZED STORAGE MODULE	PSM	4		
SHIELDING	SHD		8	
CREW SUPPORT MODULE	CSM		3	
CREW REQUIREMENTS			317 AVg.	
ASSEMBLY AND SUPPORT EQUIPMENT:				
BEAM MACHINES		198		
BEAM MACHINE-CASSETTES		3618		
CABLE ATTACHMENT MACHINES		72		
REMOTE MANIPULATOR		110		
SOLAR BLANKET DISPENSER MACHINE		72		
SOLAR BLANKET CASSETTES		5760		
REFLECTOR DISPENSER MACHINES		6		
REFLECTOR CASSETTES		360		
CABLE/CATENARY DISPENSERS		84		
ANTENNA PANEL INSTALL. EQUIP.		1		
GANTRY/CRANES		12		
CARGO STORAGE DEPOT		4		
SCB FAB FIXTURE		1		

SCB modules used mainly in the support of construction operations include a total of $17 \mathrm{ADMs}, 4 \mathrm{BMMs}, 4 \mathrm{PMs}$, and 4 PSMs. The CERs used for these modules were based on Rockwell Space Station studies.

All SPS unique fabrication/orbital construction assembly and support equipment is included in this section (reference Table 1.2.1). Included are the tribeam fabricators, cable attachment machines, solar blanket/concentrator dispensing machines, and antenna panel installation equipment. Each of these requirements were analyzed for equipment usage, replacement factors, $0 \& M$, and projected costs based on engineering estimates of design characteristics. The items of assembly and support equipment and base modules remain on the SCB as it transfers from one construction site to another. Cost estimates for these items are presented in Tables 1.2.1.1.1 through 1.2.1.1.17.

### 1.2.1.2 CREW SUPPORT FACILITIES - SCB

This element includes the facilities and equipment required for the life support and well-being of the crew members. Included are living quarters, central control facilities, recreation facilities, and health facilities of the satellite construction base.

Crew support facilities include 5 ADMs, 17 CHMs, 9 CLMs, 8 SLDs, and 3 CSMs. Detail cost sheets on these components are identified in Tables 1.2.1.2.1 through 1.2.1.2.5.

### 1.2.1.3 OPERATIONS

This element includes the planning, development, and conduct of operations at the construction facility. It includes both the direct and support personnel and the expendable maintenance supplies for satellite assembly and checkout.

This element has been divided into the subelements of operations (Table 1.2.1.3.1) and consumables (Table 1.2.1.3.2) where an average crew of 317 persons is required to man the SCB over the normal six month fabrication period. A crew rotation is scheduled for every three months. Consumables for the SCB are calculated at $3.6 \mathrm{~kg} /$ person/day.

ROCKWELL SPS CR-2 REFERENCE CONFIGURATION
table 1.2.1.1.1 BEAM MACHINE


ROCKWELL SPS CR-2 REFERENCE CONFIGURATION
table 1.2.1.1.2 beam machine cassettes

rockwell sps Cr-2 reference configuration
table 1.2.1.1.3 cable attachment machine

## infut parameters

INPUT COEFFICIENTS


ROCKWELL SPS CR-2 REFERENCE CONFIGURATION
table 1.2.1.1.4 REMOTE MANIPULATOR
INPUT-PARAMETERS
INPUT COEFFICIENTS


ROCKWELL SPS CR-2 REFERENCE CONFIGURATION
TABLE 1.2.1.1.5 BLANKET DISPENSER MACHINE


ROCKWELL SPS CR-2 REFERENCE CONFIGURATION
TABLE 1.2.1.1.6 SOLAR BLANKET CASSETTES


ROCKWELL SPS CR-2 REFERENCE CONFIGURATION TABLE L.2.1.1.7 REFLECTOR DISPENSER MACHINE


ROCKWELL SPS CR-2 REFERENCE CONFIGURATION
TABLE 1.2.1.1.8 REFLECTOR CASSETTES
INPUT PARAMETERS
INPUT COEFFICIENTS

$T=$	1.000000	TF=	1.000000		CDCER =		1.000000
M $=$	1.000000	O\&M $=$	0.054000		CDEXP=		1.000000
$C F=$	1.000000	Z1=	120.000000		CICER=		0.030000
PHI=	0.950000	22=	60.000000		CIEXP=		1.000000
$\mathrm{R}=$	0.066667	23=	360.000000				
DF $=$	1.000000	24=	120.000000	$25=$		0.0	

CALCULATED VALUES SUM TO 1.2 .1 .1 \$, MILLIONS

$\begin{array}{ll}\text { CLRM }=\text { CICER } X(M) X X(C I E X P) X C F X T F & 0.030\end{array}$


COMMENTS

ROCKWELL SPS CR-2 REFERENCE CONFIGURATION
TABLE 1.2.1.1.9 CABLE/CATENARY DISPENSER MACHINES



ROCKWFLL SPS CR-2 REFERENCE CONFIGURATION table 1.2.1.1.10 ANTENNA PANEL INS. EQPT.


ROCKWELL SPS CR-2 REFERFNCE CONFIGURATION
TABLE 1.2.1.1.11 GANTRY/CRANES
INPUT PARAMETERS INPUT COEFFICIENTS

table 1.2.1.1.12 cargo storage depots
input parameters infut coefficients


ROCKWELL SPS CR-2 REFERENCE CONFIGURATION
tABLE 1.2.1.1.13 FAB FIXTURE

table 1.2.1.1.14 AIRLOCK DOCKING MODULE (ADM)

INPUT PARAMETERS


```
ROCKWELL SPS CR-2 REFERENCE CONFIGURATION
```

TABLE 1.2.1.1.15 BASE MGMT. MODULE (BMM)


ROCKWELL SPS CR-2 REFERENCE CONFIGURATION
TABLE 1.2.1.1.16 POWER MODULE (PM)
INPUT PARAMETERS

250.000000	$T F=$	1.000000	CDCER $=$	0.0
250.000000	$0 \varepsilon M=$	0.0	CDEXP $=$	0.0
1.000000	Z1 $=$	4.000000	CICER $=$	1.100000
0.980000	$Z 2=$	60.000000	CIEXP $=$	1.000000
0.020000	$23=$	4.000000		
1.000000	$Z 4=$	4.000000	$Z 5=$	0.0

CALCULATED VALUES KW SUM TO 1.2.1.1
CD=CDCER $\times$ (T $\times$ DFIXX(COEXP) $\times$ CF
0.0

CLRM=CICER X (M)XX(CIEXP) X CF X TF
275.000



ROCKWELL SPS CR-2 REFERENCE CONFIGURATION
TABLE 1.2.1.1.17 PRESSURIZFD STORAGE MODULE (PSM)

INPUT PARAMETERS


ROCKWELL SPS CR-2 REFERENCE CONFIGURATION
TABLE 1.2.1.2.1 AIRLOCK DOCKING MODULE-ADM
INPUT PARAMETERS INPUT COEFFICIENTS

$T=$	2500.00000	$T F=$	1.000000		COCER $=$		0.012461
$M=$	2500.00000	O\&M $=$	0.0		CDEXP =		1.000000
CF=	1.000000	$21=$	5.000000		CICER =		0.006036
PHI=	0.980000	22=	60.000000		CIEXP =		1.000000
R $=$	0.020000	23=	5.000000				
DF=	1.000000	24=	5.000000	25 =		0.0	

CALCULATED VALUES KG SUM.TO 1.2.1.2 s,MILLIONS
$C D=C D C E R \times(T \times D F) X X(C D E X P) \times C F$
31.152

CLRM $=$ CICER $X(M) X X(C I E X P) X C F X T F$
15.090


ROCKWELL SPS CR-2 REFERENCE CONFIGURATION
TABLE 1.2.1.2.2 CREW HABITABILITY MODULE-CHM
INPÜT PARAMETERS
INPUT COEFFICIENTS

$C T B=(I C L R M / E) \times(\# R M X \quad 23+0.5) \times X(E)-0.5 X X(E)) \quad 1 / 23144$
CIPS $=$ CTB*Z4/Z2
27.241

CRCI =CTB $\times R$
1.923

COEM $=$ O\&M OR CTB*Z5/Z2/ENYR 0.0
COMMENTS
SEE 1.2.2.2.1 FOR DDTEE

ROCKWELL SPS CR-2 REFERENCE CONFIGURATION
TABLE 1.2.1.2.3 CONSUMABLES LOGISTICS MODULE-CLM



ROCKWELL SPS CR-2 REFERENCE CONFIGURATION
TABLE 1.2.1.2.5 CREW SUPPORT MODULE-CSM
INPUTT PARAMETERS
INPUT COEFFICIENTS


CTB $=(1$ CLRM /E) $\times$ (I\#RM			X	$23+0$	$-0.5 \times \times(E))$		123	85.529
CIPS $=$ CTB* $24 / 22$								4.276
CRCI	$=C T B$	$\times \mathrm{R}$						1.711
CCEM $=$ OEM OR CTB*Z5/Z2/ENYR								0.0
COMMENTS								

ROCKWELL SPS CR-2 REFERENCE CONFIGURATION
TABLE 1.2.1.3.1 OPERATIONS, CONSTRUCTI ON CREW


ROCKWELL SPS CR-2 REFERENCE CONFIGURATION
TABLE - 1.2.1.3.2 ORBITAL OPERATIONS,CONST. PROV.
INPUT PARAMETERS
IN̈PUT COEFFICIENTS

$T=$	410832.000	TF=	1.000000	CDCER =	0.0
$M=$	410832.000	OEM $=$	0.0	CDEXP $=$	0.0
$\mathrm{CF}=$	1.000000	Z1=	1.000000	CICER =	0.000022
PHI=	1.000000	22=	60.000000	CIEXP=	1.000000
$R=$	0.0	$23=$	31.000000		
$D F=$	1.000000	24=	30.000000		



### 1.2.2 LOGISTICS SUPPORT FACILITIES - LEO

This element includes the hardware, software and operations required in LEO to support the construction and operations and maintenance of the satellite system. Included are crew life support facilities, cargo and propellant depots, and vehicle servicing facilities necessary for the receiving and transfer of cargo and personnel distined for a construction base or operational satellite located in GEO.

LEO support operations will require a permanent crew of 24 at the LEO facility. These personnel will provide supervisory activities for transfer of up and down payloads between the HLLV and OTVs. They also perform the scheduled maintenance required by the electric propulsion OTV, such as changeout of ion thruster screens. Included are work and crew support facilițies (Table l.2.2) plus required operations.

Table 1.2.2 LEO Base Modules

SYSTEH   DESCRIPTION	ABBREVIATION	HORK   SUPPORT   FACILITIES	CREW   SUPPORT   FACILITIES
CREM HABITABILITY MODULE			
CONSUMABLES LOGISTICS   MODULE	CHM		1
MASE MANAGEMENT MODULE   CREM SUPPORT MODULE/EVA	CLM		1
POWER MODULE			

### 1.2.2.1 WORK SUPPORT FACILITIES

This element includes the facilities and equipment required to provide logistics support in LEO. Included are HLLV and OTV docking stations, payload handling equipment, and cargo and propellant storage depots. Excluded are facilities related to crew support.

A 100 kW solar array power module and the base management module are work support facilities. Cost estimates contained in Tables 1.2.2.1.1 and 1.2.2.1.2 were based on Rockwell Space Station studies.

TABLE 1.2.2.1.1 BASE MGMT. MODULE-BMM


ROCKWELL SPS CR-2 REFERENCE CONFIGURATION
tAble 1.2.2.1.2 POWER MODULE-PM


### 1.2.2.2 CREW SUPPORT FACILITIES

This element includes the facilities and equipment required for the life support and well-being of the crew members. Included are living quarters, recreation facilities, and health facilities at LEO.

The crew habitability module and crew support module/EVA are the same basic configuration as for those on the SCB. However, the crew support module has an airlock and EVA preparation area. A consumables logistics module is the third element of crew support facilities.

CERs used for crew support facilities were based upon Rockwell Space Station studies. See Tables 1.2.2.2.1, 1.2.2.2.2, and 1.2.2.2.3.

ROCKWELL SPS CR-2 REFERENCE CONFIGURATION
table 1.2.2.2.1 CREW habitability module-Chm
INPUT PARAMETERS
INPUT COEFFICIENTS


CALCULATED VALUES KG SUM TO 1.2 .2 .2 \$, KILLIONS
$C D=C D C E R X(T \times D F) X X(C D E X P) \times$ CF 262.278
$\begin{array}{ll}\text { CLRM }=\text { CICER X (M)XX(CIEXP) X CF X TF } & 101.790\end{array}$

$C T F U=(C L R M / E) X(\# R M \times 21+.5) \times X(E)-0.5 \times \times(E))$
101.928


COMMENTS

ROCKWELL SPS CR-2 REFERENCE CONFIGURATION
table 1.2.2.2.2 CONSUMABLES LOGISTICS MODULE


ROCKWELL SPS CR-2 REFERENCE CONFIGURATION
TABLE 1.2.2.2.3 CREW SUPPORT MODULE/EVA
infut parameters input coefficients

$T=$	27000.0000	$T F=$	1.000000		CDCER $=$	0.012432
$M=$	27000.0000	O¢M $=$	0.0		CDEXP $=$	1.000000
$C F=$	1.000000	Z1 $=$	1.000000		CICER=	0.005798
PHI=	0.980000	Z2=	60.000000		CIEXP=	1.000000
$\mathrm{R}=$	0.020000	23=	1.000000			
$D F=$	1.000000	Z4=	1.000000	$25=$		


CALCULATED VALUES KG	SUM TO 1.2.2.2	S,MILLIONS
$C D=C D C E R \times$ (T X DF)XX(CDEXP) $\times$ CF	.. . . . . .	335.664
CLRM $=$ CICER $\times$ (M)XX(CIEXP) $\times$ CF $\times$ TF		156.546


$\begin{array}{ll}C T F U=(C L R M / E) \times(\$ R M X 21+.5) \times X(E)-0.5 \times X(E)) & 156.759\end{array}$


### 1.2.2.3 OPERATIONS

This element includes the planning, development, and conduct of operations at the logistics support facility. It includes both the direct and support personnel and the expendable maintenance supplies required for logistics support.

An average of 24 crew members are required at the LEO Base to support orbital operations. Engineering estimates were made of the operations and consumable requirements at LEO. See Tables 1.2.2.3.1 and 1.2.2.3.2.

ROCKWELL SPS CR-2 REFERENCE CONFIGURATION
TABLE 1.2.2.3.1 LEO OPERATIONS CREW
INPUT PARAMETERS
INPUT COEFFICIENTS

CALCULATED VALUES MEN SUM TO $1.2 .2 .3 \quad \$, M I L I I O N S$

$\begin{array}{ll}\text { CLRM }=\text { CICER } X ~(M) X X I C I E X P) ~ X ~ C F ~ X ~ T F ~ & 1.498\end{array}$



COMMENTS

ROCKWELL SPS CR-2 REFERENCE CONFIGURATION
table 1.2.2.3.2 LEO CREW PROVISIONS
INPŪT PARAMETERS
INPUT COEFFICIENTS

$T=$	31104.0000	TF=	1.000000		CDCER $=$	0.0
$M=$	31104.0000	O\&M $=$	0.0		CDEXP $=$	0.0
C F =	1.000000	21 =	1.000000		CICER=	0.000022
PHI=	1.000000	22=	60.000000		CIEXP=	1.000000
$R=$	0.0	23=	31.000000			
DF=	1.000000	24=	30.000000	$25=$		



### 1.2.3 SATELLITE O\&M SUPPORT FACILITIES

This element includes the facilities, equipment, and operations required in GEO to support the operations and maintenance of the satellite system. Included are the on-orbit monitor and control facility and the life support facilities and equipment required to provide confortable safe living quarters for the resident crew members.

A permanent satellite operations and maintenance base is installed on each satellite at a location near the antenna to provide best access to all systems of the satellite. The base has facilities for both the crew and for storage of maintenance material, and installation/repair equipment. Table 1.2.3 identifies the supporting facilities.

Table 1.2.3 Satellite O\&M Base

$\begin{aligned} & \text { SYSTEM } \\ & \text { DESCRIPTION } \end{aligned}$	ABBREVIATION	$\begin{gathered} \text { WORK } \\ \text { SUPPORT } \\ \text { FACILITIES } \\ \hline \end{gathered}$	$\qquad$
AIRLOCK DOCKING MODULE	ADM	3	1
CREM HABITABILITY MDDULE	CHM		1
COMSUMABLES LOGISTICS MODULE	CLM		1
BASE MANAGEMENT MODULE	BMM	1	
CREN SUPPORT MODULE/EVA	CSM/EVA		1
PRESSURIZED Storage module	PSM	2	

### 1.2.3.1 WORK SUPPORT FACILITIES

This element includes the facilities and equipment required for operation and maintenance of the satellite system. Included are satellite monitor and control stations and any centralized repair facilities not included under maintenance.

The $A D M$ is required at four places for the integration of other modules comprising the satellite $0 \& M$ base. Three of these modules are to be used primarily for work support operations. The satellite BMM incorporates a monitoring and fault isolation capability for the SPS satellite subsystems as well as the controls required for alternate operational modes and functional isolation of selected subsystems for maintenance. The cost estimates of these modules and the PSM are shown in Tables 1.2.3.1.1, 1.2.3.1.2 and 1.2.3.1.3. The CERs are based on Rockwell Space Station studies.

ROCKWELL SPS CR-2 REFERENCE CONFIGURATION
TABLE 1.2.3.1.1 AIRLOCK DOCKING MODULE-ADM


ROCKWELL SPS CR-2 REFERENCE CONFIGURATION
table 1.2:3.1.2 bASE mgMt mODULE-bMM
INPUT COEFFICIENTS



### 1.2.3.2 CREW SUPPORT FACILITIES

This element includes the facilities and equipment required for the life support and well-being of the crew members. Included are living quarters, recreation facilities, and health facilities.

The combination crew support and EVA module (CSM/EVA) has the same internal function as for the SCB, but occupies only half of the module. The other half is an integrated multi-crew member EVA preparation area and airlock station.

The ADM, CHM, CLM and CSM/EVA modules are costed in Tables 1.2.3.2.1, 1.2.3.2.2, 1.2.3.2.3, and 1.2.3.2.4. The estimates are based on Rockwell's Space Station studies.

- RÖCKWELL SPS CR-2 REFERENCE CONFIGURATION

TABLE 1.2.3.2.1 AIRLOCK DOCKING MODULE-ADM


ROCKWELL SPS CR-2 REFERENCE CONFIGURATION
table 1.2.3.2.2 CREW HABITABILITY MODULE-CHM


ROCKWELL SPS CR-2 REFERENCE CONFIGURATION
table 1.2.3.2.3 CONSUMABLES LOGISTICS MODULE-CLM


ROCKWELL SPS CR-2 REFERENCE CONFIGURATION
TABLE 1.2.3.2.4 CREW SUPPORT MODULE/EVA

INPUT PARAMETERS

$T=$	27000.0000	TF=	1.000000		CDCER $=$		0.0
$M=$	27000.0000	OEM=	0.0		CDEXP =		0.0
$C F=$	1.000000	Z1=	1.000000		CICER =		0.005798
PHI=	0.980000	$22=$	60.000000		CIEXP $=$		1.000000
$R=$	0.020000	$23=$	60.000000				
DF =	1.000000	24=	60.000000	$25=$		0.0	


CLRM $=$ CICER $X(M) X X(C I E X P) \times C F X T F$
156.546

$C T F U=(C L R M / E) X((H R M X Z 1+.5) \times X(E)-0.5 X X(E))$
156.759

$C T B=((C L R M / E) \times I$ (\#RM X

$1 / 23$

142.894
$C I P S=C T B * 24722$
142.894

CRCI $=$ CTB $\times R$
2.858

CCEM $=$ OEM OR CTB*Z5/22/ENYR O.O
COMMENTS
SEE 1.2.2.2.3 FOR DDTEE

### 1.2.3.3 OPERATIONS

This element includes the planning, development, and conduct of operations at the $O \& M$ support facility. It includes both the direct and support personnel and the expendable maintenance supplies required in GEO for satellite operations and maintenance.

The satellite operations base crew is manned by 30 persons on a continuous basis throughout the year. This crew and supporting provisions are costed in Tables 1.2.3.3.1 and 1.2.3.3.2 based on engineering estimates.

RDCKWELL SPS CR-2 REFERENCE CONFIGURATION
TABLE 1.2.3.3.1 SATELLITE OPFRATIONS CREW


ROCKWELL SPS CR-2 REFERENCE CONFIGURATION
table 1.2.3.3.2 SATELLITE CREW PROVISIONS
INPUT PARAMETERS

$T=$	38880.0000	$T F=$	1.000000		COCER $=$		0.0
M $=$	38880.0000	O\&M $=$	0.0		CDEXP=		0.0
$C F=$	1.000000	21=	1.000000		CICER=		0.000022
$\mathrm{PHI}=$	1.000000	Z2=	60.000000		CIEXP $=$		1.000000
$R=$	0.0	$23=$	60.000000				
$D F=$	1.000000	$24=$	60.000000	$25=$		0.0	

CALCULATED VALUES KG SUM TO 1.2.3.3

$\begin{array}{ll}\text { CLRM }=\text { CICER X (M)XX(CIEXP) X CF X TF } & 0.855\end{array}$


CRCI $=C T B X R \quad 0.0$
CCEM = O\&M OR CTB*Z5/Z2/ENYR 0.0

COMMENTS

### 1.3 TRANSPORTATION

This element of the costing includes all space transportation required to support the satellite system assembly and operation. Included are transportation requirements supporting the precursor activity, launch to LEO, orbit-toorbit transfer of all hardware, materials, and personnel, and intra-orbit movement of cargo during the construction and lifetime operation of the satellite system.

The overall scenario for SPS space transportation systems consists of seven major elements -- Space Shuttle derivatives for personnel (PLV) and precursor cargo (STS-HLLV); SPS heavy lift launch vehicle (HLLV); electric orbit transfer vehicle (EOTV); intra-orbit transfer vehicle (IOTV); personnel orbit transfer vehicle (POTV); personnel module (PM) ; and orbital/ground support facilities. Transportation requirements and concepts for SPS vary as a function of program phase. During the verification planning period (1981 1987), the baseline Shuttle is used to conduct sortie missions. Later in the verification program "growth" Shuttle is used to deliver personnel and cargo to LEO. The Shuttle derived HLLV is also employed early in the program for LEO fabrication of the space construction base plus support in building the precursor satellite (EOTV) test model. Figure 1.3-1 illustrates early program systems and identifies the SPS VTO/HL HLLV that will be needed for the fabrication of flight EOTVs and the mass-to-orbit requirements of satellite construction.


Figure 1.3-1. SPS Transportation System - LEO Operations Operational Program

Geosynchronous orbit is the eventual destination of SPS construction materials/equipment, personnel, and supplies. The crews will be transported from earth to LEO by the growth Shuttle containing the personnel module (PM) where the PM will then be carried to GEO by the POTV. Cargo will be delivered to LEO by the SPS VTO/HL-HLLV configuration, transferred to the EOTV by IOTV's, transported to GEO by the EOTV, and off-loaded by IOTV's. Additional detail on the individual vehicles is presented in later subsections.

Mass-to-orbit requirements for construction, propellant, and operations/ maintenance activities were established in accordance with the mission profile and build schedule of two SPS satellites per year with a first unit (TFU) by the end of year 2000. These calculations were based on a round trip vehicle life as shown in Table 1.3-1.

Table 1.3-1. Vehicle Life with Maintenance

## VEHICLE

STS GROWTH VEHICLE FOR PLV/CARGO $-100$
SPS-VTO/HL HEAVY LIFT LAUNCH VEHICLE 300
EOTV-CARGO (ELECTRIC) ORBIT TRANSFER VEH. 20
POTV-PERSONNEL ORBIT TRANSFER VEHICLE 100
IOTV-INTRO-ORBIT TRANSFER VEHICLE 200

Table 1.3-2 shows the vehicle fleet and vehicle flight requirements to build the first SPS satellite, LEO construction base, and the EOTV test vehicle. These calculations were based on the mass-to-LEO and GEO for personnel, materials, and supplies identified to each of the transportation modes. Precursor activities can be completed by utilizing (1) the two existing TFU personnel modules (PMs); and (2) an additional PLV over the two needed for the TFU. Two Shuttle launch vehicle sets will be combined with a cargo container/ engine module to transport materials to LEO for the precursor activity. TFU vehicle requirements are based on mission timelines, turnaround schedules, and flight profiles.

Table 1.3-3 tabulates the total program transportation requirements and the number of flights per vehicle as needed to construct the satellites and to provide operations and maintenance after IOC. These calculations are the basis for developing overall fleet requirements for a 60 -unit SPS program, but do not include the precursor effort identified in Table 1.3-2 nor the additional vehicles needed for attrition/spares or overhaul (replacement capital investment).

Table 1.3-2. TFU Transportation Requirements

SATELLITE CONST. MAIKT. \& PACKAGIMG   CREN COHSUMABLES \& PKG. POTV PROPELLLAKTS \& PKG. EOTV CONST. . MAINT. \& PKG. EOTV PROPELLANTS \& PKG. IOTV PROPELLANTS \& PKG.	MASS $\times 10^{6} \mathrm{KG}$		VEHICLE FLIGHTS					
			PLV	HLLV	POTV	EOTV		
	LEO	GEO					LEO	GEO
	37.12	37.12	45	163.5	45	6.5	164	164
	0.98	0.94	-	4.3	-	0.2	4	4
	2.91	1.46	-	12.8	-	0.3	13	6
	7.20	-	15	31.7	-	$\because$	32	-
	4.79	-	-	21.1	-	-	21	-
	0.13	0.06	-	0.6	-	-	1	-
							235	174
TOTAL	53.13	39.58	60	234.0	45	7.0	409	
TFU FLEET VEHICLE REQUIREMENTS			2	5	4	6		
GROWTH SHLTTLE VEHICLE/OPERRATIOHS requirements for precursor activities (leo base. space construction base, and EOTV TEST VEHICLE - EOTV'S)			$\begin{aligned} & 72 \text { FLIGHTS } \\ & 1 \text { VEHICLE } \\ & \text { PERSONHEL (PLV) } \end{aligned}$			129 FLIGHTS   2 VEHICLES   CARGO CARRIER/ENGINE MODULE AND LAUNCH YEHICLE		

## Table 1.3-3. Total Program Transportation Requirements

	MASS $x$	$10^{6} \mathrm{KG}$			HICLE	IGHTS		
			PLV	HLLV	POTV	EOTV		TV
	LEO	GEO					LEO	GEO
SATELLITE								
CONSTRUCTION	2197.8	2197.8	1340	9682	1220	425.1	9682	9682
OPERATIONS \& MAINTENANCE	1803.0	1803.0	3694	7943	3660	348.7	7943	7943
CRE\# CONSUMABLES								
OPERATIONS \& MAINTENANCE	31.5 86.8	28.7 86.0	-	139 382	-	5.6 16.6	139 382	126 379
POTV PROPELLANTS								
CONSTRUCTION	82.7	41.4	-	364	-	8.0	364	$r 82$
OPERATIONS \& maintenance	267.8	133.8	-	1180	-	25.9	1180	589
EOTV CONSTRUCTION CONSTRUCTION	28.2	24.2		124		4.7	124	107
OPERATIONS \& MAINTENANCE	22.2	19.0	-	98	-	3.7	98	84
EOTV PROPELLANTS								
CONSTRUCTION	340.3	2.0	-	1499	-	0.4	1499	9
OPERATIONS \& MAINTENANCE	304.0	-	-	1339	-	-	1339	-
IOTV PROPELLANTS CONSTRUCTION	7.2	3.3	-	32	-	0.6	32	15
OPERATIONS \& MAINTENANCE	8.6	3.0	-	29	-	0.6	29	13
SUMMARY								
CONSTRUCTION	2887.7	2297.4	1340	11840	1220	444	12840	10121
OPERATIONS \& MAINTENANCE	2490.4	2044.8	3694	10971	3660	396	10971	9,008
TOTAL	5178.1	4342.2	5034	22811	4880	840	22811	19,129
VEHICLE FLEET							110100210	
CONSTRUCTION	-	-	14	39	12	22		
OPERATIONS \& MAINTENANCE	-	-	37	37	37	20		
TOTAL	-	-	51	76	49	42		

### 1.3.1 SPS HEAVY LIFT LAUNCH VEHICLE (HLLV)

The SPS HLLV is shown in Figure $1.3-2$ and has a payload capability of 227,000 . kg with a vertical take-off and horizontal landing feature. The SPS HLLV is used to bring space construction and support equipment payloads, satellite system hardware, OTVs, consumables and crew expendables, and propellants from earth to LEO. This element covers the SPS HLLV vehicles and operations required to support the satellite system assembly and operation during a 30 year life. Ground rules and guidelines applicable to the HLLV are summarized in Table 1.3-4.


Figure 1.3-2. SPS Transportation System Launch Configuration
Table 1.3-4. HLLV Ground Rules/Assumptions


### 1.3.1.1 SPS HLLV FLEET

A total of 76 HLLV vehicles are required to handle the mass flow requirements throughout the 60 year SPS program. Thirty-nine vehicles are required for the construction of 60 satellites and 37 vehicles are needed for operation and maintenance during the 30 year satellite lifetime.

Data used in projecting estimates for the HLLV and supporting flight costs were factored from the NASA/JSC contract NAS9-15196. Specific changes were made to consider the reference HLLV design configuration; vehicle complexity factors -- engines, ablative shield, propellant valves, and system/subsystem design; plus the greater mass of the Orbiter/booster as compared with current experience and Rockwell Space Shuttle contract work.

HILV capital asset replacements, major overhanl requirements, spares provisioning, and system lifetimes were projected as being equivalent to two vehicle replacements for each of the SPS fleet vehicles. These calculations are reflected as an annual cost per satellite over the 30 year period.

The DDT\&E cost estimate was developed from a careful evaluation of the NAS9-15196 data base and a comparative factoring of these data as compared with data directly applicable to the Space Shuttle program.

See Table 1.3.1.1 for the SPS HLLV cost computer program tabulation.

ROCKWELL SPS CR-2 REFERENCE CONFIGURATION
TABLE 1.3.1.1 SPS-HLLV FLEET
INPUT PARAMETERS
INPUT COEFFICIENTS


### 1.3.1.2 SPS HLLV OPERATIONS

This element includes the necessary vehicle operations (user charge per flight including payload integration) required to support the SPS program. The HLLV has a lifetime capability of 300 flights.

There are a total of 22.811 round trip flights required to support the 60 year program where approximately $227,000 \mathrm{~kg}$ is delivered per flight. These are grouped into a total of 11840 flights for construction and 10,971 flights for operations and maintenance. The TFU requires a total of 234 flights to carry the necessary mass to orbit. On the average of 60 satellites, approximately 197 flights are needed for satellite construction and 6 flights are required for annual operations and maintenance per satellite.

The projected cost per HILV flight is based on contract data (reference NAS9-15196) that was factored and revised to arrive at a propellant, payload integration, and supporting operational cost by evaluation against such things as propellant costs versus HLLV requirements. See Table 1.3.1.2.

ROCKWELL SPS CR-2 REFERENCE CONFIGURATION
TABLE 1.3.1.2, SPS-HLLV OPERATIONS
INPUT PARAMETERS INPUT COEFFICIENTS


### 1.3.2 CARGO ORBITAL TRANSFER VEHICLE (COTV)

This element includes the COTV vehicle and operations required to support the satellite system assembly and operation. Included is the LEO-to-GEO transfer of space construction and support equipment, satellite system hardware, spares, and propellants required throughout the satellite lifetime.

The Rockwell cargo orbital transfer vehicle is a high specific impulse configuration that is possible with electric propulsion. The concept is shown in Figure $1.3-3$ and has a payload capability of $5.17 \times 10^{6} \mathrm{~kg}$ (equivalent to 23 HLLV payloads) with a 6 month round trip time per flight.

COTV fleet procurement and operations are detailed in sections 1.3.2.1 and 1.3.2.2, respectively.


Figure 1.3-3. EOTV Reference Configuration

### 1.3.2.1 COTV FLEET

This element includes the vehicle fleet procurement required for the SPS.
The electric OTV structural configuration is essentially the same as that employed for the satellite bay. It has a weight of $871,753 \mathrm{~kg}$ 's. The EOTV weight and payload summary is shown in Table 1,3-5.

Table 1.3-5. EOTV Weight Summary (kg) (GaAlAs)


The thruster array consists of 36 units at four locations for a total of 144 thrusters with a maximum of 64 thrusters operable simultaneously. The total attitude control system and thruster array mass is equal to $283,557 \mathrm{~kg}$ 's per EOTV.

The EOTV CERs are the same as those used for the satellite costs on the same subsystem elements. The replacement capital investment calculation is based on an attrition factor of $5-6 \%$ of each flight vehicle. Table 1.3-6 lists the elements of cost for the EOTV.

Table 1.3-6. EOTV Cost Elements

WBS	PESCRIPTION
1.3 .2 .1 .1	PRIMARY STRUCTURE
1.3 .2 .1 .2	SECONOARY STRUCTURE
1.3 .2 .1 .3	CONCENTRATOR
1.3 .2 .1 .4	SOLAR BLANKET
1.3 .2 .1 .5	SWITCHGEAR AND CONVERTERS
1.3 .2 .1 .6	CONDUCTORS AND INSULATION
1.3 .2 .1 .7	ACS HARDWARE
1.3 .2 .1 .8	INFO MANAGEMENT AND CONTROL

ROCKWELL SPS CR-. 2 REFERENCE CONFIGURATION
TABLE 1.3.2.1.1 PRIMARY STRUCTURE
INPUTं PARAMETERS INPUT COEFFICIENTS

$T=$	30890.0000	TF=	1.000000		CDCER $=$	0.023000
$M=$	2059.00000	0\&M $=$	0.0		CDEXP =	0.800000
$\mathrm{CF}=$	1.000000	Z1=	6.000000		CICER =	0.000050
$\mathrm{PHI}=$	1.000000	22=	60.000000		CIEXP=	1.000000
$\mathrm{R}=$	0.003500	23=	44.000000			
DF=	0.020000	Z4=	22.000000	$25=$		



ROCKWELL SPS CR-2 REFERENCE CONFIGURATION
table 1.3.2.1.2 SECONDARY Structure


ROCKWELL SPS CR-2 REFERFNCE CDNFIGURATION
TABLE 1.3.2.1.3 CONCENTRATOR
INPUT PARAMETERS
INPUT COEFFICIENTS


ROCKWELL SPS CR-2 REFERENCE CONFIGURATION
TABLE 1.3.2.1.4 SOLAR BLANKET
INPUT PARAMETERS
INPUT COEFFICIENTS


ROCKWELL SPS CR-2 REFERENCE CONFIGURATION
TABLE 1.3.2.1.5 SWITCHGEAR AND CONVERTERS

INPUTT PARAMETERS



ROCKWELL SPS CR-2 REFERENCE CONFIGURATION
TABLE 1.3.2.1.6 CONDUCTORS AND INSULATION
INPUT PARAMETERS - INPUT COEEFFICIENTS


TABLE 1.3.2.1.7 ACS HARDWARE

INPUT PARAMETERS

$T=$	283557.000	$T F=$	0.093800		CDCER =	1.122000
$M=$	1970.00000	O\&M $=$	0.0		CDEXP $=$	0.190000
$\mathrm{CF}=$	1.000000	$21=$	6.000000		CICER=	0.057000
$\mathrm{PHI}=$	0.950000	$22=$	60.000000		CIEXP=	0.729000
$R=$	0.003500	$23=$	44.000000			
DF=	0.300000	24=	22.00000 .0	Z5 =	20.000000	

INPUT COEFFICIENTS
20.000000


COMMENTS

ROCKWELL SPS CR-2 REFERENCE CONFIGURATION


### 1.3.2.2 COTV OPERATIONS

Necessary vehicle operations (user charge per flight including payload integration) is included in this element.

The flight life of the EOTV is estimated at 20 round trips from LEO to GEO. Four hundred forty-four flights are required for the construction of 60 satellites and an additional 396 flights will maintain the operational satellites for the 30 year period. Seven flights are required to build the first satellite.

The calculations used in this cost estimate are presented in Table 1.3.2.2.


### 1.3.3 PERSONNEL LAUNCH VEHICLE (PLV)

This element includes the space shuttle growth vehicles and operations required to support the satellite system assembly and operation. Included is the launch to LEO and return of all personnel and priority cargo required throughout the satellite construction period and operational lifetime.

In addition to the earth-to-LEO transfer of personnel during satellite construction and operational periods, the space shuttle growth vehicle will 1) accommodate the transfer of personnel and 2) with the cargo/engine module adaptation, will transfer the cargo/material needed for precursor activities dealing with the LEO Base, Space Construction Base, and the initial EOTV-335 mW precursor test article. Shuttle goowth vehicle and flight requirements for the SPS Grogram are identified in Table 1.3.3.

## Table 1.3.3. Shuttle Growth Vehicle and Flight Requirements

VEHICLEITEM DESCRIPTION	Stise						cis	
YEHICLE REOUIREMENTS								
SHUTILE ORBITER (STANDARD VERSION)	(1)	(3)	15	37	26	78	1 EA	
SHUTLLE CARGO CARRIER \& MODULE	2				1	3		1 EA
EXTERNAL TANK	(201)	$160)$	1541	3694		5235	1 EA	1 EA
LIQUID ROCKET BOOSTER	$16)$	(10)	34	74	216	324	2 EA	2 EA
FLIGHT REQUIREMENTS								
PERSONNEL LAUNCH VEHICLE (PLV)	(72)	1601	1412	3694		5106		
CARGO CARRIER LAUNCH VEH. MODULE	129-					129		
- Precursor \& TFU requirements included in satellite construction quantity.								

The Personnel Launch Vehicle (PLV) is described in section 1.3.3.1 along with the Shuttle derived cargo carrier and engine module required to support the precursor program. PLV operations are described in section 1.3.3.2. The Personnel Module is covered in section 1.3.5.1.

### 1.3.3.1 PLV FLEET

This element includes the vehicle fleet procurement required to support the SPS program. Included are the vehicles for personnel transfer from earth to LEO and for cargo as needed to support the precursor phase of SPS program development.

The PLV consists of a standard Shuttle Orbiter, an external tank, and two liquid rocket boosters. The cargo vehicle configuration is achieved by replacing the orbiter with a cargo carrier and engine module. The external tank and liquid rocket booster (Figure l.3.3) are common systems used on the Shuttle derived personnel and cargo vehicles. The integral, SSME-35 powered concept requires four engines with a thrust-to-weight ratio at lift-off of 1.335, which is adequate for both nominal and abort trajectories.

BOOSTER (EACH):
GROSS WT = 871K LE
PROP. WT $=715 \mathrm{~K}$ L8
INERT HT = 156K LE
SSNE-35:
SSNE-35:
F}=459K.LB (5.L.) (EACH
F}=459K.LB (5.L.) (EACH
ISP = 406 SEC (S.L.)
ISP = 406 SEC (S.L.)
MR=35:1
MR=35:1


Figure 1.3.3. PLV Configuration
Cost estimates were developed from work produced under the Rockwell Shuttle Growth Study Contract NAS8-32015 of May, 1977. DDT\&E, Shuttle Orbiter, external tank, liquid rocket booster, the engine module costs, and projections on operational requirements were identified by comparative evaluation with the Shuttle growth data base. Many different concepts for reducing Shuttle operations costs were examined in the study, but overall cost characteristics clearly reflected the choice of propulsion which lead to the SSME- 35 powered LRB as a considered alternative.

Elements of the STS PLV and cargo fleet were individually analyzed on the basis of systems per vehicle, vehicle life, asset rep lacement and operational aspects. A PLV orbiter 30 year replacement factor of 0.5 equivalent vehicles
was used for each orbiter in the fleet. The external tank is an expended item after each flight and the LRBs are to be replaced on the basis of two boosters for each one in the fleet. An attrition/spares factof of 0.5 equivalent vehicles is also used for the cargo/engine module.

DDT\&E and system cost estimates are identified in the following tables:

Table No. Item
1.3.3.1.1 STS-PLV Orbiter
1.3.3.1.2 STS-PLV External Tank
1.3.3.1.3 STS-PLV Liquid Rocket Booster
1.3.3.1.4 STS-Cargo Carrier and Engine Module

ROCKWELL SPS CR-2 REFERENCE CONFIGURATION
TABLE 1.3.3.1.1 STS-PLV ORBITER
inPUT PARAMETERS
INPUT COEFFICIENTS

$T=$	1.000000	$T F=$	1.000000	CDCER=	0.0
$M=$	1.000000	O\&M=	0.0	CDEXP =	0.0
$C F=$	1.000000	Z1=	3.000000	CICER =	600.000000
PHI $=$	0.920000	$22=$	60.000000	CIEXP=	1.000000
$R=$	0.014444	23=	78.000000		
$D F=$	1.000000	Z4=	15.000000		

\$.MILLIONS
CD=CDCER $X$ (T X DF)XX(CDEXP) X CF
0.0

CLRM $=$ CICER $\times(M) \times X(C I E X P) \times C F \times T F$
600.000


> ROCKWELL SPS CR-2 REFERENCE CONFIGURATION

TABLE 1.3.3.1.2 STS-PLV EXTERNAL TANK
INPUT PARAMETERS INPUT COEFFICIENTS



ROCKWELL SPS CR-2 REFERENCE CONFIGURATION
TABLE 1.3.3.1.4 STS CARGO CARRIER AND EM

$T=$	1.000000	$T F=$	1.000000		CDCER =	245.000000
$M=$	1.000000	OEM $=$	0.0		CDEXP $=$	1.000000
CF $=$	1.000000	Z1=	3.000000		CICER=	265.800049
PHI $=$	0.920000	22=	60.000000		CIEXP=	1.000000
$R=$	0.0	23=	3.00000			
DF $=$	1.000000	24=	3.000000	$25=$		

CALCULATEO VALUES SUM TO 1.3 .3 .1 S,MILLIONS
$C D=C D C E R \times(T \times$ DFIXX(CDEXP) X CF 245.000

CLRM $=$ CICER X (M)XX	


$\neq T R M$	$=T / M$	1.000
$N$		
$N$		

CTFU=(CLRM / EIX(I\#RM X Z1+.5)XX(E) -0.5XX(E)) 745.362

CTB = ( $(C L R M / E) X I(\# R M X \quad 23+0.5) X X(E)-0.5 X X(E)) \quad 248.454$
CIPS=CTB*Z4/Z2 12.423
CRCI $=$ CTB $\times R$ O.0
COEM = O\&M OR CTB*Z5/Z2/ENYR 0.0
COMMENTS

### 1.3.3.2 PLV OPERATIONS

This element includes the necessary vehicle operations (user charge per flight including payload integration) required to support the SPS program.

A total of 5,235 flights are required of the Shuttle derived personnel and cargo vehicle -- 1,412 for construction, 3,694 for operations, and 129 for the precursor program. The 1,412 PLV flights for construction include 72 for the precursor effort and 60 for the TFU satellite.

Cost estimates per flight were projected after an engineering analysis of the operational costs and vehicle elements identified in the Rockwell Shuttle Growth Study (NAS8-32015). Tables 1.3.3.2.1 and 1.3.3.2.2 cover operational cost estimates.

# ROCKWELL SPS CR-2 REFERENCE CONFIGURATION 

TABLE 1.3.3.2.1 PLV OPERATIONS


ROCKWELL SPS CR-2 REFERENCE CONFIGURATION
TABLE 1.3.3.2.2 STS HLLV CARGC OPERATIONS
INPUT PARAMETERS INPUT COEFFICIENTS


### 1.3.4 PERSONNEL ORBITAL TRANSFER VEHICLE (POTV)

This element includes the POTV vehicles and operations required to support the satellite system assembly and operation. Included is the LEO-to-GEO and return of all personnel and priority cargo required throughout the satellite construction and operational periods.

All of the POTV options evaluated utilize a single stage propulsive element that is fueled in LEO and refueled in GEO for the return flight. The reference configuration is illustrated in Figure 1.3 .4 where the POTV (a propulsive stage) is capable of transporting a 60 -man personnel module (PM) of $18,000 \mathrm{~kg}$. The vehicle is costed in section 1.3.4.1 and POTV operations are covered in section 1.3.4.2.


Figure 1.3.4. POTV Configuration

### 1.3.4.1 POTV FLEET

The vehicle fleet procurement required to support the SPS program is included in this element. The POTV is a single stage OTV of $36,000 \mathrm{~kg}$ with refueling at GEO for the return to LEO. Propellants are carried from LEO to GEO by the EOTV. The SPS HLLV carries the construction, crew expendables, and POTV propellants to LEO. The Shuttle Orbiter carries the crew in a personnel module (PM) to LEO for transfer to the POTV.

The single stage OTV configuration selected is a scaled version of those concepts presented in the BAC FSTSA NAS9-24323 contract and engineering analyses presented in Exhibits A/B of the Rockwell contract NAS8-32475. DDT\&E estimates considered fewer engines, a significant difference in mass, and the degree of development required for the engines. Engineering analyses of available vehicle estimates projected a POTV cost based on the design and complexity of the vehicle.

POTV cost estimates are presented in Table 1.3.4.1 for a total fleet of 196 vehicles with: l) 12 for personnel involved in satellite construction, 2) 37 for SPS operational activities, and 3) an attrition factor of 3 equivalent vehicles to keep the fleet fully operational.

ROCKWELL SPS CR-2 REFERENCE CONFIGURATION
table 1.3.4.1 POTV-FLEET

INPÜT PARAMETERS
INPUT COEFFICIENTS

$T=$	1.000000	TF=	1.000000	CDCER =	350.000000
$M=$	1.000000	O\&M=	0.0	CDEXP $=$	1.000000
$C F=$	1.000000	21=	4.000000	CICER=	15.000000
$\mathrm{PHI}=$	0.920000	22=	60.000000	CIEXP=	1.000000
$\mathrm{R}=$	0.081667	$23=$	196.000000		
DF=	1.000000	24=	12.000000		


$\begin{array}{ll}C T F U=(C L R M / E) X(I \# R M X 21+.5) X X(E)-0.5 X X(E)) & 54.764\end{array}$
$C T B=(I C L R M / E) \times(I$ \#RM $X \quad 23+0.5) \times X(F)-0.5 X X(E)) \quad 9.010$

CRCI $=$ CTB $X R \quad 0.736$

COEM $=$ O\&M OR CTB*Z5/22/ENYR 0.185
COMMENTS

### 1.3.4.2 POTV OPERATIONS

This element includes the necessary vehicle operations (user charge per flight including payload integration) required to support the SPS program with required personnel.

The primary operational cost of the POTV is the cost of fuel. A total of 4,880 flights were costed on this basis where 1,220 flights were for satellite construction; 3,660 for operations and maintenance; and 45 of the 1,220 needed to support TFU activities. Table 1.3.4.2 presents the results of this analysis.

INPUT PARAMETERS INPUT COEFFICIENTS

$T=$	1.000000	$T F=$	1.000000		CDCER $=$	0.0
$M=$	1.000000	$0 ¢ M=$	0.0		CDEXP =	0.0
$C F=$	1.000000	21=	45.000000		CICER=	0.033742
PHI $=$	1.000000	$22=$	60.000000		CIEXP=	1.000000
$R=$	0.0	$23=$	4880.00000			
$D F=$	1.000000	$24=$	1220.00000	$25=$	3660.00000	

CALCULATÉD VALUES SUM TO 1.3 .4
\$,MILLIONS

$\begin{array}{ll}\text { CLRM }=\text { CICER X (M)XX(CIEXP) X CF X TF } & 0.034\end{array}$


CCEM $=$ OEM OR CTB*Z5/Z2/ENYR 0.069
COMMENTS

### 1.3.5 PERSONNEL MODULE (PM)

This element includes the PM units and operations required to support the satellite system assembly and operation. Included in the earth-to-LEO-to-GEO and return transfer of all personnel and critical hardware items required throughout the satellite construction and operational periods. The PM provides a crew habitat during the orbit-to-orbit transfers of personnel as well as during the trip from earth. An illustration of the PM was shown in Figure 1.3.4. It has a 60-man capacity and is approximately 17 m long by 4.5 m in diameter. The Shuttle is used for the earth-to-LEO transfer and the POTV handles the round trip movement from LEO-GEO-LEO.

### 1.3.5.1 PM FLEET

Procurement of the PM as required to support the SPS program is covered in this element. The PM is operated by a pilot and co-pilot and contains the major systems of life support, communication, seating, and support facilities. A total of 4 PMs are needed to support the program and 2 equivalent PMs are considered sufficient to provide spares and major overhaul components during the program. Four vehicles will be required to build the satellite TFU and early program supporting elements such as the LEO Base and SCB.

Engineering cost projections were based on Rockwell company-funded studies of 1976 where DDT\&E, a pair of 68 passenger modules, and the orbiter modification kits were costed from internal design specifications: PM fleet procurement costs are presented in Table 1.3.5.1.

```
ROCKWELL SPS CR-2 REFERFNCE CONFIGURATION
```

TABLE 1.3.5.1 PM FLEET
INPUT PARAMETERS
INPUT COEFFICIENTS



### 1.3.5.2 PM OPERATIONS

This element includes the necessary operations (user charge per flight including payload integration) required to support the SPS program.

A PM crew (pilot and co-pilot) will command the module during earth-toLEO trips on the Shuttle and complete the procedures of leaving the Shuttle and making the POTV hook-up for transfer to GEO. The crew will monitor passenger off-loading/transfer to and from the LEO Base, SCB, or satellite O\&M Base. Two man-days are calculated per trip which includes a rest period at GEO and a day off after the trip. An average of 4,993 round trip filghts are projected from earth to GEO and back. A total of 132 flights are needed for the precursor and TFU programs. The engineering estimates of PM operations are presented in Figure 1.3.5.2.


### 1.3.6 INTRA-ORBITAL TRANSFER VEHICLE (IOTV)

This element includes the IOTV vehicles and operations required to support the satellite system assembly and operation. Included is the intraorbit transfer of cargo between the HLLV, EOTV, construction facility, logistics support facility, and operational satellites.

### 1.3.6.1 IOTV FLEET

This element includes the necessary vehicle fleet procurement required to. support the SPS program. The IOTV has been synthesized in terms of application and concept only. IOTV elements considered here are powered by a chemical ( $\mathrm{LOX} / \mathrm{LH}_{2}$ ) propulsion system. At least three distinct applications have been identified; (1) the need to transfer cargo from the HLLV to the EOTV in LEO and from the EOTV to the SPS construction base in GEO; (2) the need to move materials about the SPS construction base; and (3) the probable need to move men or materials between operational SPSs. Clearly the POTV, used for transfer of personnel from LEO to GEO and return, is too large to satisfy all intra-orbit requirements. A "free-flyer" teleoperator concept would appear to be a logical solution to the problem. A propulsive element was synthesized to satisfy the cargo transfer application from HLLV-EOTV-SPS base in order to quantify potential on-orbit propellant requirements. Pertinent IOTV parameters are sumarized in Table 1.3.6.

Table 1.3.6. IOTV Design Parameters

SUBSYSTEM	WEIGHT (kg)
ENGINE (I ASE)	245
PROPELLANT TANKS	15
STRUCTURE AND LINES	15
DOCKING RING	100
ATTITUDE CONTROL	50
OTHER	100
SUBTOTAL	525
GROWTH (10\%)	53
TOTAL INRT	578
PROPELLANT	300
TOTAL LOADED	878

A total of 840 IOTVs are needed to maintain intra-orbit cargo/operations flow during the program. One hundred ten vehicles will accomplish the construction phase and 100 vehicles are needed for satellite O\&M. An attrition/ spares fleet of equivalent vehicles was projected on the ratio of 3 units for each of the operational vehicles.

Cost estimates for the IOTV are engineering assessments based on POTV designs and similarities such as those of the common advanced space engine (ASE). Table 1.3.6.1 displays the applicable cost data.


### 1.3.6.2 IOTV OPERATIONS

This element includes the necessary vehicle operations and propellant costs required to support the SPS program. It includes the on-orbit operational cost of transferring cargo at LEO and GEO.

A total of 41,940 IOTV flights are planned for LEO and GEO construction and operations/maintenance requirements of the program. The 22,811 flights needed for construction and the 19,979 for operations and maintenance are considered as equal missions for the purpose of costing. The propellant requirements were averaged and calculated at 1977 dollars of $\$ 0.07 / \mathrm{kg}$ for $\mathrm{LO}_{2}$ and $\$ 3.27 / \mathrm{kg}$ for $\mathrm{LH}_{2}$. A $40 \%$ mark-up was added per flight for other operational and maintenance charges. See Table 1.3.6.2.

## ROCKWELL SPS CR-2 REFERENCE CONFIGURATION

TABLE 1.3.6.2 IOTV OPERATIONS


### 1.3.7 GROUND SUPPORT FACILITIES

This element includes all land, buildings, roads, shops, etc., required to support the cargo handling, launching, recovering, refurbishment, and operations of the space transportation system.

### 1.3.7.1 LAUNCH FACILITIES

This element includes the design and construction of the actual launch facility and its associated equipment. Included are land, buildings, and equipment required to support the various crews. It also includes the required control centers and administrative facilities.

### 1.3.7.2 RECOVERY FACILITIES

This element covers the design, construction, and equipping of the actual recovery facilities.

### 1.3.7.3 FUEL FACILITIES

This element includes fuel production facilities, storage and handling facilities, transportation, and delivery and safety facilities for both the fuel and the oxidizer. Also included are the facilities for fuels used in the various orbital transfer facilities)

### 1.3.7.4 LOGISTICS SUPPORT

This element includes the land, buildings, and handling equipment for the receiving, inspection, and storage and packaging of all payloads to be launched except for fuels and oxidizers.

### 1.3.7.5 OPERATIONS

This element includes the planning, development, and conduct of operations at the ground support facilities. It includes both the direct and support personnel and the expendable maintenance supplies required for the ground support facilities operation and maintenance.

A cost estimate for ground support facilities is projected in Table 1.3.7 based on the Boeing final report, NAS9-14710, dated September 1977, Volume 4, Cost Estimates. It is judged that there is little difference in the cost of facilities in this report as compared with those projected for the transportation and operations requirements of this study.


ClinMENTS

### 1.4 GROUND RECEIVING STATION

The ground receiving station (GRS) is designed to accept power from a single satellite and to provide a nominal 5 GW of power to the utility interface. As shown in Figure 1.4-1, a typical receiving station would be located at $34^{\circ} \mathrm{N}$ latitude with rectenna panels covering an elliptical area of 13 km in the north-south direction and 10 km .in the east-west direction. This area is surrounded by another elliptical segment to house the power conversion equipment and to provide for the operational facilities of the receiving station. A sumary of point design characteristics are presented in Table 1.4-1.


Figure 1.4-1. Operational Ground Receiving Facility (Rectenna) - Typical

Table 1.4-1. System Point Design Characteristics

SIZE (km)	$10 \times 13$
TOTAL GROUND AREA $(\mathrm{km})^{2}$	102.1
TOTAL PANEL AREA $(\mathrm{km})^{2}$	79.53
AREA PER PANEL $(9.33 \times 14.69 \mathrm{~m})$	137.0
NUMBER OF PANELS	580.500
NUMBER OF OIODES	$330 \times 10^{6}$
RECTENMA EFFICIENCY (\%)	89
VOLTAGE OUTPUT PER STRING (kV de)	$40+$
VOLTAGE OUTPUT TO UTILITY (kV ac)	500
POWER OUTPUT (GW) AT UTILITY INTER-TIE	$4.61 *$
*BASED UPON 5.53 GW INCIDENT RADIATION	

This ground based element of the SPS is comprised of the land, facilities, equipment, and hardware/software systems to receive the radiated microwave power beam and to provide the power at the required voltage and type of current for entry into the national power grid. It also includes the equipment, facilities, and hardware/software necessary to provide operational control over the satellite; and a reliable means of monitoring and controlling ground based systems and equipment.

Major objectives of the SPS ground system design are: (1) to provide low maintenance subsystems and equipment capable of handling the designed power levels; (2) to assure that the overall station will provide dependable service for at least 30 years; (3) to minimize the size of operational crews and costs; and (4) to economically optimize system performance.

There are nine major activities involved in the overall GRS construction process. After the survey and clearing, utilities and supporting facilities are installed while the site is leveled and graded. Trenching and concrete pouring precede the installation of rectenna panels, after which electrical hook-up, converter stations, and monitoring facilities are installed. The 40 kV dc and 500 kV ac buses are then interconnected and procedures take place for system checkout. Cost effective utilization of equipment and personnel was identified after the development and integration of detail phasing schedules on each of the first four ground stations. Contacts with A\&E, equipment manufacturers, concrete, and construction firms provided additional information on the duration and sequence of operations based on their experience with programs of this type. Figure $1.4-2$ is an integrated summary schedule of major events in constructing the ground receiving station where emphasis is placed on the utilization of construction equipments and their transfer from site to site as required to maintain the build rate of two stations per year. It was concluded that the equipment from Site 1 would be available for use on Site 3. This information on equipment/manpower utilization, site sequencing, and equipment lifetimes is used in this analysis to establish total resource requirements for the program.

The ground receiving station was divided into several main elements for the purpose of associating cost and programatic definitions. These elements include (1) site and facilities, (2) rectenna support structure, (3) power collection, (4) control, (5) grid interface, and (6) operations. SPS design definitions and specification requirements were analyzed to provide realistic cost estimates and resource definitions for each element as explained in the following sections.

Internal resources, cost estimating relationships, and prior cost analyses were supplemented by: 1) direct contact with business, industry, and institutional organizations, and 2) a literature search of various publications to obtain realistic cost estimates and operational definitions directly applicable to the unique requirements of the GRS. A list of principal organizations and literature sources are presented in Table 1.4-2.

A summary of the costs associated with the GRS is presented in Table 1.4-3. The detail supporting these costs is presented in the subsequent pages of this section.


Figure 1.4-2. Rectenna Construction Sequence Summary Schedule

```
Table 1.4-2. Organizations and Literature Sources
 Supporting GRS Definition
```

ORGANIZATION	PURPOSE
- AMERICAN BRIDGE - A DIVISION OF U.S. STEEL   - RIVERSIDE CEMENT - -A DIVISION OF AMERICAN CEMENT CORPORATION; AND C. S. JOHNSON, CO.   - TOWNSEND $\varepsilon$ BOTTUM, INC., CONSTRUCTION MANAGER, TEN MN SOLAR PLANT BARSTOW, CA.   - SOUTHERN CALIFORNIA EDISON   - MODERN ALLOYS, INC.; AND MILLER FORMLESS CO.   - CATERPILLAR; INTERNATIONAL HARVESTER; AND JETCO, INC.	TO DEVELOP STEEL REQUIREMENTS, COSTS AND OPERATIONS DEFINITION FOR PROCUREMENT AND INSTALLATION OF RECTENKA SUPPORT STRUCTURE   PROVIDE CONSULTATION ON CEMENT/CONCRETE SPECIFICATIONS, OPERATIONAL METHODS, PROCESSING/HANDLING EQUIPMENT, AND CONCRETE PLANT   DISCUSS SITE PREPARATION, CONSTRUCTION OPERATIONS/SEQUENCING, PLUS ACTIVATION REQUIREMENTS   TO DISCUSS DC/AC POWER DISTRIBUTION AND CONVERSION REQUIREMENTS, AND OBTAIN COST ESTIMATES ON INSTALLATION OF LINES/TOWERS   TO DISCUSS USE AND APPLICATION OF EQUIPMENT/CREW FOR CONTINUOUS CONCRETE POUR OF RECTENNA SUPPORT STRUCTURE FOOTINGS   OBTAIN PRICES ON EARTH MOVING, GRADING AND TRENCHING EQUIPMENT
LITERATURE SOURCES	
- THE RICHARDSON RAPID SYSTEM 1978-1979 EDITION   - Emgineering news record - 1977   A HEEKLY McGRAW-HILL PUBLICATION   - RATIONAL CONSTRUCTION ESTIMATINGG GUIDE (NCE)	CONSTRUCTION LABOR AND OPERATIONS PRICES   CEMENT, AGGREGATE AND LABOR PRICES   CONSTRUCTION OPERATIONS

Table 1.4-3. GRS Cost Summary (\$ Millions)

$\begin{aligned} & \text { WBS } \\ & \text { HO. } \end{aligned}$		DDT8E	TFU	161	$\begin{aligned} & \text { RCI/ } \\ & 0 \& M \end{aligned}$
1.4.1	SIte and facilities	1.0	195.2	188.9	. 2
1.4 .2	RECTENNA SUPPORT STRUCTURE	2.0	1849.6	1828.	. 5
1.4 .3	POWER COLLECTION	3.0	1353.2	1353.2	-
1.4 .4	CONTROL	10.0	75.0	75.0	-
1.4.5	GRID INTERFACE	- 99.7	145.7	145.7	-
1.4.6	OPERATIONS	-	-	-	77.9

### 1.4.1 SITE AND FACILITIES

The ground receiving station is located on a site of 35,000 acres where over 25,000 acres of a central ellipse, or $72 \%$ of the total acreage, is used for rectenna panels. The area surrounding the inner ellipse is allocated for maintenance/control facilities, access roads, converter stations, and the rows of towers that support the 40 kW dc and 500 kV ac cables. The GRS perimeter is fenced for security reasons.

The sequence of construction operations begins with site identification, environmental impact studies, zoning/permits, surveys, utility/road installation, and supporting facilities. After reference coordinates are established, the site is cleared, leveled, and followed with precise grading for panel foundations, fabrication facilities, installation and GRS site completion. This includes concrete mixing plants, rectenna panel fabrication factories, crew accommodations, warehousing, and support facilities as shown in Figure 1.4-3. The GRS DDT\&E effort will be a valuable asset to all GRS sites by providing designs, analyses, and procurement specifications for commonly used buildings and facilities.


Figure 1.4-3. Support Facilities
Clearing and leveling operations will occur at a number of locations within the panel farm perimeter. These operations consist of tree removal (if required), grading, and leveling the terrain to acceptable slope angles, and removing excess dirt. Sixteen areas of the ellipse would be cleared and leveled simultaneously. Bulldozers will make the initial cut, scrapers will grade to more precise requirements, and an estimate was made of one crew of 13 men
to grade eight acres per day. The crew and equipment required to prepare a 35,000 acre site was established based on a single shift that would level 130 acres per day to meet a nine month schedule.

Costs developed for the site and facilities are divided into the elements of land, site preparation, roads and fence, utilities, buildings and facilities, maintenance equipment, lightning protection, and DDT\&E. Basic design parameters used in this costing are presented in Table 1.4-4. The DDT\&E, investment, and operations cost established for each element are tabulated as follows:

Table 1.4-4. Site and Facilities Requirements

ITEM	UNIT PARAMETER
LAND/FENCING	35,000 ACRES
GRADING/LEVELING	HEAVY EQUIPMENT/CREW SIZE
PREPARATION	SURVEY, EIR, PERMITS, AEE PLANNING
UTILITIES	WATER, ELECTRICITY, GAS, SEWAGE
ROADS/RAILS	ROADS 35 MILES; RAILS 45 MILES
FACILITIES	CONVERSION STATION, MONITOR $\varepsilon$
	CONTROL, MAINTENANCE/STORAGE
DRAINAGE	6" GRAVEL FOR COMBINATION ACCESS-
LIGHTNING PROTECTION	WAY \& DRAINAGE BETWEEN PANEL ROWS
	TBD

Table 1.4.1.1 Land and Preparation (Land - 1.4.1.1.1, Preparation 1.4.1.1.2)

Table 1.4.1.2 Roads and Rences (Rails \& Roads - 1.4.1.2.1, Fencing 1.4.1.2.2)

Table 1.4.1.3 Utilities
Table 1.4.1.4 Buildings and Facilities (Storage/Maintenance - 1.4.1.4.1, Converter Station - 1.4.1.4.2)

Table 1.4.1.5 Maintenance Equipment
Table 1.4.1.6 Lightning Protection System
Table 1.4.1.7 Site \& Facilities DDT\&E

TABLE 1.4.1.1.1 LAND
INPUT PARAMETERS
INPUT COEFFICIENTS


ROCKWELL SPS CR-2 REFERENCE CONFIGURATION
TABLE 1.4.1.1.2 LAND PREPARATION


ROCKWELL SPS CR-2 REFERENCE CONFIGURATION
TABLE 1.4.1.2.1 RAILS AND RDADS


ROCKWELL SPS CR-2 REFERENCE CONFIGURATION
TABLE 1.4.1.2.2 FENCING
INPUT PARAMETERS
INPUTT COEFFICIENTS


ROCKWELL SPS CR-2 REFERENCE CONFIGURATION TABLE 1.4.1.3 UTILITIES

INPUTT PARAMETERS

$T=$	1.000000	$T F=$	1.000000		CDCER $=$	0.0
$M=$	1.000000	OEM=	0.0		CDEXP $=$	0.0
$\mathrm{CF}=$	1.000000	Z1 =	1.000000		CICER=	0.200000
PHI=	1.000000	22=	60.000000		CIEXP=	1.000000
$\mathrm{R}=$	0.0	$23=$	60.000000			
$D F=$	1.000000	24=	60.000000	15=		



> ROCKWELL SPS CR-2 REFERENCE CONFIGURATION

TABLE 1.4.1.4.1 STORAGE,MAINTENANCE
INPUT PARAMETERS
INPUT COEFFICIENTS


ROCKWELL SPS CR-2 REFERENCE CONFIGURATION
TABLE 1.4.1.4.2 CONV. STA. \& MONITOR/CONTROL FAC.

INPUT PARAMETERS

$T=$	21290.0000	$T F=$
$M=$	21290.0000	$0 \& M=$
$P H=$	1.000000	$21=$
$P H=$	1.000000	$22=$
$R F=$	0.0	$23=$
$D F$	1.000000	$Z 4=$

INPUT COEFFICIENTS

CDCER $=$	0.0
CDEXP =	0.0
CICER=	0.000478
CIEXP $=$	1.000000

$C D=C D C E R \times(T \times D F) \times \times(C D E X P) \times C F$
0.0

CLRM=CICER $X(M) X X I C I E X P) \times C F X T F$
10.177
$E=1.0+\operatorname{LOG}(P H I) / \operatorname{LOG}(2.0)$ 1.000
$C T F U=(C L R M / E) X(I$ FRM X Z1+.5)XX(E) -0.5XX(E)) 10.177
СТВ $=(1$ CLRM/E)X(I*RM X $23+0.5) \times X(E)-0.5 X X(E))$ $1 / 23$ ..... 10.177CIPS=CTB*Z4/Z210.177
CRCI $=$ CTB $\times$ R ..... 0.0
COEM $=$ OEM OR CTB*Z5/22/ENYR ..... 0.0

COMMENTS

## ROCKWELL SPS CR-2 REFERENCE CONFIGURATION

TABLE 1.4.1.5 MAINTENANCE EQPT.


table 1.4.1.7 SITE \& FACILITIES DOTEE

## inpūt párämeters

INPUT COEFFICIENTS

$T=$	1.000000	$T F=$	1.000000	COCER $=$	1.000000
$M=$	1.000000	$0 \& M=$	0.0	$C D E X P=$	1.000000
$C F=$	1.000000	$Z 1=$	1.000000	$C I C E R=$	0.0
$P H I=$	1.000000	$Z 2=$	60.000000	$C I E X P=$	0.0
$R=$	0.0	1.000000	$Z 3=$	60.000000	
$D F=$	$24=$	60.000000	$Z 5=$	0.0	



### 1.4.2 RECTENNA SUPPORT STRUCTURE

The rectenna farm area of $102.1(\mathrm{~km})^{2}$ is covered by 580,500 panels that have a total mW intercept area of $79.53(\mathrm{~km})^{2}$. Each panel ( $9.33 \mathrm{~m} \times 14.69 \mathrm{~m}$ ) is tilted at an angle of $40^{\circ}$ to the horizontal and is mounted on two continuous ribbons of concrete as shown in Figure 1.4-4. The procurement, fabrication, assembly and installation of the steel rectenna support structure, and the supporting foundation placement are costed in this section and represent the results of consultation and discussions with industrial/construction contacts.


### 1.4.2.1 PANEL STRUCTURE

The rectenna panel structure is comprised of four standard size eightinch (wide flange) I beams, supporting tube braces, and 18 hat-shaped sections for the mounting of the power collection electronic elements. Tube braces, steel cast fittings and attachment hardware are used to support the panel on the continuous footing as shown in Figure 1.4-5.

A detail analysis of the support structure was completed to identify the amount of material needed; fabrication, operations, assembly, and installation requirements; plus an estimate of manpower and equipments needed to produce the average daily production of 2150 panels over the nine month period. The cost of material for a rectenna panel is shown in 1.4-6.

The rectenna panel hat section serves as a mounting surface for the laminated-copper-clad mylar array elements. (See section 1.4.3, Power Collection). Adhesives will be used to mount the elements to the structure to


Figure 1.4-5. Rectenna Array Support Structure


Figure 1.4-6. Rectenna Panel Support Structure
provide continuous support and added strength with a minimum of localized panel deflection.

The basic hat section is formed at the rectenna site from $0.020^{\prime \prime}$ galvanized steel sheet stock by processing through a set of forming rollers in a continuous manner. The forming machine (Yoder mill) accommodates widths of rolled mill stock sufficient to produce the finished hat sections ready for assembly to the I-beams.

Four standard wide-flange 8 -inch galvanized steel I-beams are required in lengths of 9.33 m for each rectenna panel. This material will be delivered to the site in precut lengths for hole punching and the addition of brackets/ machined castings for the support braces and panel mounting.

Four 3.5" diameter tube braces of galvanized steel are cut to a length of 4.76 m and preassembled to the fittings/hardware. Anchors, brackets, clips, hangers, etc., are fabricated or cast of carbon steel material and galvanized prior to machining at the site. All these items are scheduled to combine with the hat sections and I-beams at a centralized facility for assembly. A concept for such a facility is shown in Figure 1.4-7. The factory has multiple assembly lines where each line has a materials feed section, steel assembly facilities, electron ics assembly and checkout section. It was assumed that one line using automated procedures could assemble and checkout a panel in 40 minutes. On this basis, seventy-two assembly lines operating 20 hours per day, seven days a week are required to produce 580,500 panels in the allocated 270 days. Eight additional requirements are sumarized in the lower left of the figure.

After the panels have been checked, they are placed on an overhead conveying system and transported to loading stalls, where they are assembled into 9 -panel magazines and loaded on specially designed trucks for delivery to the point of installation.

Specialized equipment is required to deliver the panels from the factory to the installation point and to install them because of their large dimensions. After consultation with industrial sources on large equipment handling, a concept for a specialized machine was developed (Figure 1.4-8). The front and rear wheel pairs are each steerable as a unit and have provisions for height adjustment. The panels are transferred in magazines and lifted by means of fixtures mounted in vertical rails. They can be translated laterally and longitudinally for final positioning before attachment to the footings.

### 1.4.2.2 TRENCHING AND CONCRETE FOOTINGS

A trade-off which considered eight individual footings versus continuous footings was made. A maximum wind force of $90 \mathrm{~m} / \mathrm{hr}$ was assumed. It was determined that the amount of concrete required for either approach was essentially the same, but that the continuous footing concept was easier to install and required fewer operations and less capital equipment.

Each panel is secured to the footings at eight locations by fixtures which are imbedded in the concrete during the pouring operation. Mounting attachments which provide for longitudinal and lateral adjustment are secured to the fittings. Screw jacks on each of the rear attach points provide for panel adjustment and alignment.

The footings of continuous concrete are 0.43 meters deep, 0.31 meters wide, and project 0.15 meters above ground level. Two footings are excavated simultaneously by trenchers which feed the removed dirt into a truck. Approximately $17 \times 10^{6}$ meters of trenches must be excavated. To accomplish this, 38 trenchers are required, each trencher excavating 90 meters per hour.



Figure 1.4-8. Panel Loading Sequence
Table 1.4-5 summarizes crew and equipment requirements compatible with the nine month schedule to prepare 1088 panel rows per rectenna.

Table 1.4-5. Concrete Footing Equipment/Crew

ITEM/DESCRIPTION	SITE   CONSTRUCTION   QUANTITY	I977   UNIT   PRICE   DOLLARS)	TOTAL   COST
TRENCHERS - JW-2	38	$\$ 70,000$	$\$ 2,660,000$
DUMP TRUCKS - 992C			
CONCRETE DELIVERY   VEHICLES - I0 C.Y.   CONCRETE FORMING   MACHINES	190	$\$ 350,000$	$\$ 9,100,000$
CONCRETE CENTRAL   MIX PAVING PLANTS   TOTAL COST	10	$\$ 50,000$	$\$ 9,500,000$
TRENCHING \& CONCRETE   CREW PERSONNEL	1480	$\$ 60,000$	$\$ 600,000$

Each rectenna panel will be mounted and aligned on 6.8 cu yds of concrete placed by concrete formers such as those commonly used in freeway divider construction. The formers extrude a shaped ribbon at rates of 6 meters per minute. Reinforcing steel and panel attach fittings are inserted as the concrete is vibrated during the extrusion process. Concrete footing requirements for the rectenna panels are shown in Table 1.4-6.

Table 1.4-6. Concrete Footing Requirements

ITEM/DESCRIPTION	$\begin{gathered} 1977 \text { \$ } \\ \text { (MILL PRICE } \\ \text { DELIVERED) } \\ \hline \end{gathered}$	$\begin{aligned} & \text { INGREDIENTS } \\ & \text { FOR } \\ & 6.8 \text { CU.YDS. } \end{aligned}$	MATERIAL COST DELIVERED (1977 DOLLARS)
$\begin{gathered} \text { CEMENT (5 SACK) } \\ (94 \# \text { SACK) } \end{gathered}$	\$42/TON	3196\#	\$67.12
SAND	\$4.51/TON	9520\#	\$21.47
ROCK $1^{\prime \prime}-1 \frac{1}{2}$	\$4.39/TON	12444\#	\$27.31
WATER	-	2040\#	0
REINFORCING STEEL - \#4	\$0.10/LB	64\#	\$6.44
TOTAL/PANEL		27264\#	\$122.34
DELIVERED 1977 MILL PRICES PER ENGINEERING NEWS RECORD (ENRL McGRAW HILL, AN INDUSTRY PUBLICATION			

### 1.4.2.3 COST ESTIMATES

DDT\&E, investment, construction/installation, and operations costs of the rectenna support structures (less electronic elements) and the concrete footings are identified in the following tables:

Table 1.4.2.1.1 Hat Sections
Table 1.4.2.1.2 Wide Flanges
Table 1.4.2.1.3 Tube Braces \& Hardware
Table 1.4.2.1.4 Assembly \& Installation
Table 1.4.2.2.1 Footing Concrete \& Rebar
Table 1.4.2.2.2 Machinery \& Equipment
Table 1.4.2.2.3 Construction Operations
Table 1.4.2.3 Support Structure DDT\&E
table 1.4.2.1.1 HAT SECTIONS
INPUT Parameters

$T=$	580500.000	$T F=$	1.000000	CDCER $=$		0.0
$M=$	1.000000	त\& $M=$	0.0	COEXP=		0.0
CF=	1.000000	Z1=	1.000000	CICER=		0.000619
PHI=	1.000000	Z2=	60.000000	CIEXP=		1.000000
$R=$	0.0	23=	60.000000			
DF=	1.000000	24 =	60.000000		0.0	
	TED VALUES	PANEL	SUA 10			\$,MILLIONS
$C D=C D C E$	T X DFIXXICDEX	$X C F$				0.0
CLRM $=$ CI	(M)XX(CIEXP)	C X				0.001




ROCKWELL SPS CR-2 REFERENCE CONFIGURATION
table 1.4.2.1.3 TUBE BRACES $\&$ haroware
INPUTT PARAMETERS
INPUT COEFFICIENTS

$T=$	580500.000	TF=	1.000000		CDCER =		0.0
$M=$	1.000000	OEM $=$	0.0		CDEXP=		0.0
CF=	1.000000	21=	1.000000		CICER =		0.000743
PHI=	1.000000	Z2 =	60.000000		CIEXP=		1.000000
$\mathrm{R}=$	0.0	23=	60.000000				
DF $=$	1.000000	Z4=	60.000000	Z5 =		0.0	

CALCULATED VALUES PANEL SUM.TO 1.4.2.1
S,MILLIONS
$C D=C D C E R \times(T \times$ DFIXXICDEXP) XCF 0.0
$\begin{array}{ll}C L R M=C I C E R X(M) X X I C I E X P) \times C F X T F & 0.001\end{array}$



ROCKWELL SPS CR-2 REFERENCE CONFIGURATION
table 1.4.2.2.1 FOOTING CONCRETE E RE-BAR
INPUT PARAMETERS

## INPUT COEFFICIENTS



$\begin{aligned} & \text { \#RM }=T / M \\ & \text { N } \\ & \text { N } E=1.0+\operatorname{LOG}(P H I) / \operatorname{LOG}(2.0) \end{aligned}$	$\begin{array}{r} 580500.000 \\ 1.000 \end{array}$	
CTFU $=(C L R M / E) \times(\# R M \times 21+.5) \times \times(E)-0.5 \times \times(E))$		70.821
$C T B=(1 C L R M / E) \times(\#$ RM $X \quad 23+0.51 \times \times(E)-0.5 \times X(E))$	1123	70.820
CIPS $=$ CT B*Z4/Z2		70.820
CRCI $=$ CTB $\times$ R		0.0
CCEM $=$ OEM OR CTB*Z5/Z2/ENYR		0.0
COMMENT S   CCNCRETE ESTIMATED AT 6.8 CU YDS OF 5 SACK CEMENT.   MIX 3196 LBS CEMENT, 9520 LBS SANO,		

TABLE 1.4.2.2.2 MACHINGERY \& EQUIPMENT


ROCKWELL SPS CR-2 REFERENCE CONFIGURATION
TABLE 1.4.2.2.3 CONSTRUCTION OPERATIONS


ROCKWELL SPS CR-2 REFERENCE CONFIGURATION
TABLE 1.4.2.3 SUPPORT STRUCTURE DDTEE

INPUT PARAMETERS


COMMENTS

INPUT COEFFICIENTS

S,MILLIONS
2.000
0.0

### 1.4.3 POWER COLLECTION

This element of the GRS incIudes the rectenna array elements associated with the actual reception and rectification of the microwave radiation. These elements are in series and parallel as required to deliver the line output voltage and current. Also included are those components that accept the dc power from the array elements and route, control, convert, and switch this power for delivery to the power conversion stations of the grid interface.

The rectifier assembly consists of a GaAs diode and input/output filters. The outputs of the rectifier circuit are series connected to output $40+\mathrm{kV}$ (Figure 1.4-9). The regulation assembly accepts the voltage from the series connected rectenna diodes and adjusts the voltage output to the power distribution feeders to a value consistent with positive current flow. The rectenna array elements are $0.735 \times 9.33 \mathrm{~m}$ in size and 20 elements are combined per panel with diode circuitry equivalent to the $m W$ density pattern. A total of 735 diodes or diode equivalents are required per average panel with a rectenna total of $330 \times 10^{6}$ diodes as shown in Figure 1.4-10.


Figure 1.4-9. Rectenna Schematic Block Diagram - Preliminary

The electronic array element of the antenna is a multilayered copper/ dielectric sandwich panel material. Resource/mass projections are identified in Table 1.4-7. These calculations were based on the array cross section and panel requirements shown in Figure 1.4-11. Costs were determined from


Figure 1.4-10. Diode Concept

Table 1.4-7. Resource Requirements Rectenna Dipole - Bow-Tie - Panel Array Elements

580,500 RECTENNA PANELS		
- Dleleciric		
$\begin{aligned} & \text { PLASIIC COMPOUND-3.5 } \mathrm{LB} / \mathrm{FT}^{3}, \\ & 0.4375 \mathrm{LB} / \mathrm{F}^{2} \times 856.4 \times 10^{6} \mathrm{FT}^{2} \end{aligned}$	-	$374.68 \times 10^{6} \mathrm{LB}$
- MYLAR		
$0.001-\mathrm{IN}$ THICKNESS AT $87.36 \mathrm{LB} / \mathrm{FT}^{3}$, $0.02913 \mathrm{LB} / \mathrm{FT}^{2} \times 856.4 \times 10^{6} \mathrm{~F}^{2}$		$24.95 \times 10^{6}$ LB
- COPPER		
0.0039 THICKNESS AT $556.6 \mathrm{LB}_{\mathrm{B}} / \mathrm{T}^{3}$, $0.118753 \mathrm{LB} / \mathrm{FT}^{2} \times 856.4 \times 10^{6} \mathrm{FT}^{2}$	-	$101.70 \times 10^{6}$ LB
- OIODES		
$102 \mathrm{PER} 426.67 \times 10^{6}$ DIODES OR EQUIV, -		$26.67 \times 10^{6} \mathrm{LB}$
TOTAL		$528 \times 10^{6}$ LB
		909.6 LB/PANEL 412.6 KG/PANEL

estimating guides/industrial contacts and combined with the cost of switches and regulators needed at each panel to provide a total cost estimate of $\$ 1942$ for the antenna array elements.

The power collection and distribution system consists of all field feeders (collectors), supporting switchgear, 40 kV dc buses to the power converters, and the towers/footings needed to support the transmission lines. Approximately 330,000 switchgears, $10^{7}$ meters of feeder cables, miscellaneous junction boxes, etc., must be delivered and installed at the panel sites. Tractor/ trailer trucks are used for this purpose and proceed through the panel rows,


- 20 array elements/panel
- $1475 \mathrm{FT}^{2}$ (137 M $\mathrm{M}^{2}$ ) per panel
- 1990 technology
- 1977 PRICES

Figure 1.4-11. Rectenna Dipole - Bow-Tie Panel Array Elements
delivering material at each panel. Additional trucks with reels playout the feeders, which then are installed in conduits and spliced to panel connections by the electrical installation crew. Contacts with a utility company indicate a requirement of 8 manhours to hookup one panel. On this basis, the manpower and equipment projections were established for a 20 hour 7 day week.

Equipment for electrical hookup and checkout of completed panels was calculated on the basis of acquisition cost prorated over the service life and utilization period at a particular site. Total crew requirements of 4196 personnel and the schedule period were the basis of calculating man-day requirements of 755,280 . The amortized cost of equipment and labor were combined for the total cost factor.

DDT\&E power collection costs are associated with the design and verification of bow-tie electronic panels/bonding processes, connectors, and large switchgear to optimize the voltage/current ratios and element/wiring configuration. Cost estimates are provided in the following areas:

Table 1.4.3.1 Antenna Array Elements
Table 1.4.3.2 Power Distribution System
Table 1.4.3.3 Installation and Checkout
Table 1.4.3.4 Power Collection DDT\&E

ROCKWELL SPS CR-2 REFERENCE CONFIGURATION


## ROCKWELL SPS CR-2 REFERENCE CONFIGURATION

TABLE 1.4.3.2 POWER DISTRIBUTION SYSTEM


## ROCKWELL SPS CR-2 REFERENCE CONFIGURATION

TABLE 1.4.3.3 INSTALLATION \& CHECKOUT
INPUTT PÁRAMETERS INPUT COEFFICIENTS


TABLE 1.4.3.4 POWER COLLECTION-DDTEE


### 1.4.4 CONTROL

The telemetry, tracking, communications, monitoring of microwave beam characteristics, computing phase corrections, and the equipment needed to provide frequency standard signals for the satellite are included in this section. This hardware will be used to monitor and control the satellite from the ground.

The following monitor and control functions are performed:

1. Tracking, using ground-based radars to monitor the orbital stability of the satellite.
2. Beam monitoring and control, using ground equipment for adaptive or command control of the satellite microwave beam.
3. Data management, using equipment required to analyze signals and data from the satellite and ground-based systems to compute control signals and corrective data to maintain safe and optimum performance.
4. Communications, using equipment required to maintain communications between the ground station and the SPS satellite. Included are the communications with the crew, and telemetry and command equipment not included in the beam monitoring and control assembly.

At this time, the cost effort is divided into the three categories of control center equipment, beam control electronics, and DDT\&E. Two sets of full-up IBM 370, or equivalents, a complete display center, and a manned control room are envisioned as basic elements of the control center. Beam control electronics would consist of control sensors and dual frequency transmitters. The overall DDT\&E and hardware costs were projected by engineering. The exacting requirement of this rectenna operation will require further study in future contract activity to define the technical and performance standards. It should also be noted that system and operational requirements are needed to define adequate software/programming considerations.

Cost estimates are presented as follows:
Table 1.4.4.1 Control Center Equipment
Table 1.4.4.2 Control Electronics
Table 1.4.4.3 Control DDT\&E

ROCKWELL SPS CR-2 REFERENCE CONFIGURATION
TABLE 1.4.4.1 CONTROL CENTER EQUIPMENT
INPUT PARAMETERS



	CCEM $=$ O\&M OR CTB*Z5/Z2/ENYR$0.0$			

COMMENTS

## ROCKWELL SPS CR-2 REFERENCE CONFIGURATION

TABLE 1.4.4.2 CONTROL ELECTRONICS
INPUT PARAMETERS
INPUT COEFFICIENTS


CALCULATED VALUES SET SUM TO 1.4 .4 MILLIONS

CLRM=CICER X (M)XX(CIEXP) XCFX TF 60.000

$C T F U=(C L R M / E) X(\neq R M X 21+.5) X X(E)-0.5 X X(E)) \quad 60.000$
$C T B=((C L R M / E) X(I \# R M X \quad Z 3+0.5) X X(E)-0.5 X X(E)) \quad 1 / 231000$
CIPS=CTB*Z4/Z2 $\mathbf{6 0 . 0 0 0}$
CRCI $=$ CTB $X R$
$C \subset E M=O \& M$ OR CTB*Z5/Z2/ENYR O.O

COMMENTS

INPUT PARAMETERS

$T=$	1.000000	TF=	1.000000		CDCER $=$		10.000000
$M=$	1.000000	OEM=	0.0		CDEXP=		1.000000
$C F=$	1.000000	Z 1 =	1.000000		CICER =		0.0
PHI $=$	1.000000	22=	60.000000		CIEXP=		0.0
$R=$	0.0	Z3 =	60.000000				
$D F=$	1.000000	24=	60.000000	$25=$		0.0	

\$, MILLIONS
10.000
0.0


COMMENTS

### 1.4.5 GRID INTERFACE

This element includes the power conversion equipment that receives electrical power from the power collection system and conditions/converts it to a high voltage dc or ac power acceptable for input into the national power grid.

The converter stations accept 40 kV dc power and output 500 kV ac or dc. The concept utilizes a solid-state inversion/step-up concept typified by an existing dc - ac conversion station located in Sylmar, California. Although specific design details of this system await clarification in a future study effort, an analysis and cost estimate was prepared as shown in Table 1.4-8. The CER for DDT\&E were derived from cost estimates in the "Technical Study Report on Pacific Northwest-Southwest dc inter-tie," prepared by the Bonneville Power Administration in February, 1976. This DDT\&E estimate was based on six cost quotations which Bonneville received on a 1.44 GW and a 2.20 inter-tie. The total cost for the 1.44 GW terminal ( $\$ 156.7 \overline{\mathrm{M}}$ ) was allocated as $30 \%$ DDT\&E and $70 \%$ ICI. This judgment was based on the assumption that most of the facility will be a standard design.

Table 1.4-8. Grid Interface (WBS 1.4.5)

ITEM DESCRIPTION	SPECIFICATION	GRS QUANTITY	PROJECTED   UNIT COST	$\begin{aligned} & \text { TOTAL } \\ & (1977 \$) \\ & \hline \end{aligned}$
CONVERTER: STATIONS	400 mW 500 kV ac or kV de	12 EA.	$\$ 10 \times 10^{6}$	\$ $120 \times 10^{6}$
ISOLATION SWITCHGEAR	$4 \times 4 \times 4 \mathrm{~m}$	24 EA	\$400,000 EA	\$0.96×10 ${ }^{6}$
FILTER YARDS		12	\$100,000 EA	\$1.2×10 ${ }^{6}$
INTERCONNECT TOWERS \& FOUNDATION	500 kV ac TOWERS	90 EA		\$12.741×10 ${ }^{6}$
INTERCONNECT   TRANSMISSION CABLE		12 LINES	\$90,000/MI	\$10.789×10 ${ }^{6}$
TOTAL/GRS -				\$145.69×10 ${ }^{6}$

Cost estimates are presented in Table 1.4.5.1 on electrical equipment and in Table 1.4.5.2 on DDT\&E.

INPUT PARĀMETERS


INPUT COEFFICIENTS

COMMENTS

TABLE 1.4.5.2 GRID INTERFACE-DDTEE

INPUT PARAMETERS


COMMENTS

### 1.4.6 OPERATIONS

This element includes the planning, development, and conduct of operations at the ground receiving station. It includes both the direct and support personnel and the expendable maintenance supplies required for the ground station operation and maintenance.

Operations and maintenance personnel required after IOC are identified as a 300 personnel staff to provide a 24 hour operation, maintenance/repair, security, and administrative support (Table 1.4-9). A cost estimate for maintenance material (expendables, trucks, and equipment); standby auxiliary power; and test/support equipment is also identified in the table.

Table 1.4-9. Operations Requirements

ITEM	SHIFT	NO.	TOTAL	1977 DOLLARS
- OPERATIONS \& MAINTENANCE PERSONNEL				
COMMAND \& CONTROL CENTER (PERSONNEL + SUPERVISORY).	$\begin{aligned} & 1 \\ & 2 \\ & 3 \end{aligned}$	$\begin{aligned} & 30 \\ & 30 \\ & 20 \end{aligned}$	80	
CONVERTER STATION (TOTAL FOR 12 STATIONS)	$\begin{aligned} & 1 \\ & 2 \\ & 3 \end{aligned}$	$\begin{aligned} & 36 \\ & 36 \\ & 36 \end{aligned}$	108	
24-HOUR MAINTENANCE, REPAIR, SECURITY, \& G\&A/SUPPORT		112	$\begin{gathered} 112 \\ 300 \end{gathered}$	
- MAINTENANCE MATERIAL				\$13.13×10 ${ }^{6}$
EXPENDABLES, TRUCKS, EQUIP., UTILITIES, TEST/SUPPORT EQUIP.				

Cost estimates are shown in Table 1.4.6.1 for operations and maintenance personnel and in Table 1.4.6.2 for maintenance material.

```
 ROCKWELL SPS CR-2 REFFRENCE CONFIGURATION
 TABLE 1.4.6.1 OPER. & MAINT. PERSONNEL
 INPUT PARAMETERS INPUT COEFFICIENTS
```



INPUT PARAMETERS


COMMENTS

### 1.5 MANAGEMENT AND INTEGRATION

This element includes all efforts and material required for management and integration functions at the systems level and program level. It encompasses the following functions:

1. Program Administration
2. Program Planning and Control
3. Contracts Administration
4. Engineering Management
5. Manufacturing Management
6. Support Management
7. Quality Assurance Management
8. Configuration Management
9. Data Management
10. Systems Engineering and Integration.

This element sums all of the direct effort required to provide management control including planning, organizing, directing, and coordinating the project to ensure that overall project objectives are accomplished. These efforts overlay the functional work areas (e.g., engineering, manufacturing, etc.) and assure that they are properly integrated. This element also includes the efforts required in the coordination, gathering, and dissemination of management information. Also included are the engineering efforts related to the establishment and maintenance of a technical baseline for a system by generation of system configuration parameters, criteria, and requirements. It includes requirements analysis and integration, system definition, system test definition, interfaces, safety, reliability, and maintainability. It also includes those efforts required to monitor the system development and operations to ensure that the design conforms to the baseline specifications.

The management and integration function for DDT\&E, TFU :ICI, RCI and O\&M are estimated at a cost equal to $5 \%$ of the corresponding total dollar estimates for WBS elements 1.1 through 1.4 within each area. Table 1.5 presents this tabulation.


### 1.6 MASS CONTINGENCY

A cost contingency has been added to the SPS Program to provide for potential growth due to increased weight as a result of design/development activities that would affect the procurement of systems during any phase of the program. This allowance is costed as a $15 \%$ bottom line contingency to the DDT\&E, TFU, ICI, RCI and O\&M elements of the program. Table 1.6 reflects the total amounts in each of these areas based on the totals of items 1.1, 1.2, and 1.3.



For sale by the National Technical Information Service. Springfield. Virginia 22161


[^0]:    ${ }^{1}$ Satellite Power Systems (SPS) Concept Definition Study (NAS8-32475)-Exhibit C, March 1978; Exhibit A/B, March 1977; and the SPS Feasibility Study (NAS8-32161), August 1976.

[^1]:    ${ }^{1}$ SPS Work Breakdown Structure Dictionary, National Aeronautics and Space Administration, November 1978.

[^2]:    ${ }^{1}$ Equipment Specification Cost Effect Study, Phase II, Final Report, November 30, 1976, by RCA Government Systems Division.

[^3]:    1equipment Specification Cost Effect Study, Phase II Final Report, Nov. 30, 1976, by RCA Government Systems Division

