AUTHOR INDEX | | | | 222 | 1 | (00 | |-------------------|----------|-------------------|---------------|--------------------|----------| | Adorjan A. S. | 119 | Garvin J. B. | 209 | Matsumoto S. | 493 | | Alberts T. E. | 603 | Gehrke C. W. | 351 | Matthews H. D. | 133 | | Alexander S. S. | 407 | Gibson E. K. Jr | 437 | McCurdy G. | 199 | | Allen D. T. | 647 | | | McEntire J. E. | 351 | | Allton J. H. | 703 | Hall J. B. Jr. | 503 | McKinney W. S. Jr. | 603 | | Arnold J. R. | 55 | Harrison F. W. | 603 | McLaren B. K. | 633 | | Arp L. D. | 267 | Haskin L. A. | 393, 411 | McMurray G. V. | 633 | | Augustine M. | 513 | Hawes P. B. | 513 | Meador W. E. | 69 | | Ayers J. K. | 83 | Hawke B. R. | 219 | Ming D. W. | 385 | | | | Haynes R. D. | 597 | Morea S. | 619 | | Bahadori M. Y. | 653 | Heiken G. | 429 | Morris O. G. | 119 | | Bahr N. J. | 95 | Henley M. W. | 61 | Morrow R. C. | 543 | | Bell L. | 243 | Hijazi Y. | 261 | Mulqueen J. A. | 101 | | Brazell J. W. | 633 | Hirasaki J. K. | 119 | Mumma M. J. | 637 | | Brinker D. J. | 593 | Hood L. L | 163 | _ | | | Bufton J. L. | 209 | Hoy T. D. | 3 | Nakamura Y. | 231 | | Bula R. J. | 543, 547 | Hubbell D. H. | 519 | Namba H. | 493 | | Burns J. O. | 315, 347 | Humes D. H. | 69 | Nealy J. E. | 69 | | Burt D. M. | 423 | Hypes W. D. | 503 | Nelson M. | 513 | | Bustin R. | 437 | Trypes w. D. | 703 | Ness R. O. Jr. | 559 | | Dubuii R | 437 | Ishikawa N. | 489 | Ness S. R. | 559 | | Cameron E. N. | 189, 459 | isiikawa 14. | 107 | Nixon D. | 275 | | | | Incohe W. V | 475 | Nudd G. | 119 | | Cantrell J. N. | 199 | Jacobs M. K. | | Nudd G. | 119 | | Carr C. A. | 293 | Jenson E. B. | 133 | Object I | 221 | | Chambers T. V. | 119 | Johnson S. W. | 323, 329, 347 | Oberst J. | 231 | | Colson R. O. | 411 | Johnson L. B. III | 3 | Ogawa Y. | 673 | | Coombs C. R. | 219 | Jones E. M. | 697 | Okada T. | 489 | | Cooper E. G. | 603 | Jones J.D. | 537 | | | | Cornils K. | 603 | | | Palaszewski B. | 35 | | Cowing K. L. | 353 | Kai Y. | 493 | Parker D. | 563 | | Crabb T. M. | 475 | Kanamori H. | 489 | Persons M. B. | 3 | | Cullingford H. | 525 | Kaplicky J. | 275 | Petro A. J. | 31, 119 | | Cullingford H. S. | 497 | Kaszubowski M. | 83 | Pettit D. | 429 | | | | Keller M. D. | 497 | Pettit D. R. | 647 | | D'Onofrio M. | 119 | Keller T. S. | 569 | Phillips P. G. | 139 | | Daga A. W. | 281 | Klassi J. D. | 293 | Ponnamperuma C. | 351 | | Daga M. A. | 281 | Knoll K. T. | 683 | Prince R. P. | 537 | | Davidson W. L. | 677 | Knott W. M. III | 537 | | | | DeBarro M. J. | 579 | Koelle H. H. | 447 | Rawlings R. P. | 119 | | De Young R. J. | 69 | Kohler J. L. | 407 | Redd E J. | 199 | | Doggett W. R. | 603 | Kulcinski G. L. | 459, 547 | Reynolds K. H. | 255 | | Donaldson D. K. | 637 | Kuo K. C. | 351 | Rindt J. R. | 559 | | Dowling R. | 175 | Kuriki K. | 673 | Roberts M. | 249 | | Duric N. | 347 | | | Robitaille H. A. | 519 | | | - | Lewis R. H. | 411 | Rocha C. J. | 293 | | Easterwood G. W. | 519 | Li Y. T. | 609 | • | | | Edelman R. B. | 653 | Lin T. D. | 267, 483 | Sager J. C. | 537 | | Eijadi D. A. | 299 | Lindbergh C. | 267 | Saito T. | 673 | | Elsworth D. | 407 | Lindstrom D. J. | 411 | Santarius J. F. | 75, 459 | | DESTROIGE D. | 107 | Linfield R. P. | 321 | Sartain J. B. | 519 | | Farmer J. T. | 579 | Linsley J. | 133 | Sauer R. L. | 551 | | Fernini I. | 347 | Llewellyn C. P. | 17 | Schmitt H. H. | 459, 667 | | Flood D. J. | 593 | Love H. | 483 | Schultz J. R. | 551 | | rioui D. J. | J73 | | | • | | | Cab | 601 | Lu F. | 379 | Scott K. W. | 531 | | Gabrynowicz J. I. | 691 | Manufas D. T. | E 7 1 | Semkow K. W. | 411 | | Gallagher S. K. | 563 | Maguire B. Jr. | 531 | Senseny J. | 267 | | Garvey J. M. | 25 | Maryniak G. E. | 397 | Sherwood B. | 237, 637 | A-2 2nd Conference on Lunar Bases and Space Activities | Shevchenko V. V. | 155 | Sviatoslavsky I. N. | 459 | Wernick J. | 275 | |------------------|---------------|---------------------|--------------------|------------------|---------------| | Simonds C. H. | 139 | Svitek T. | 175 | Wetzel J. P. | 323, 329 | | Simonsen L. C. | 579 | | | Wheeler R. M. | 543 | | Sliwa N. E. | 603 | Taylor G. J. | 183, 307, 329, 347 | Williams K. D. | 299 | | Soloway D. I. | 603 | Taylor L. A. | 361, 379 | Williams W. M. | 633 | | Somers R. E. | 597 | Thompson W. B. | 55 | Wittenberg L. J. | 459, 547, 609 | | Spudis P. D. | 163, 307 | Tibbitts T. W. | 543, 547 | Wright R. L. | 3 | | Staehle R. L. | 175 | Trotti G. | 243 | · · | | | Stalling D. L. | 351 | Tucker W. B. | 453 | Yodzis C. W. | 119 | | Stark D. | 483 | | | Yoshida T. | 493 | | Stecklein J. M. | 119 | Vaniman D. | 429 | Young R. M. Jr. | 453 | | Stern M. O. | 47 | Varner C. C. | 119 | • | | | Stramler J. | 659 | Volk T. | 525 | Zimprich S. J. | 119 | | Strauss A. M. | 569 | Vondrak R. R. | 337 | Zumwalt R. W. | 351 | | Street J. J. | 519 | | | | | | Stump W. R. | 119, 139, 677 | Weidman D. J. | 17 | | | | Sulkanen M. | 347 | Wendel W. R. | 281 | | | ### SUBJECT INDEX A Abort, lunar lander, 179; option, 33, 175, 180; trajectory, 33 Active Lunar Seismic Experiment, 209 Aerobrake, 6, 13, 34, 37-39, 41, 47, 51, 62, 65-67, 103, 455; mass, 39, 62, 65; orbital-transfer vehicle, 34, 47, 62, 119; use at Mars, 455; weight sensitivity, 65 Ag, see Silver Age, Balmer Basin, 172; Balmer light plains, 172; Copernican basalts, 216; exposure, 372, 373; old lunar rocks, 157; Reiner Gamma, 158; relationship to regolith thickness, 185, 186; test subject, 566, 571, 573; Tsiolkovsky basalts, 186 Agglutinate, hydrogen enrichment, 440; impact origin, 519; regolith content, 372; relationship to L/FeO, 372; titanium in glass, 190 Agriculture, Biosphere II, 513-516; hydroponic, 245; lunar, 408, 521, 551, 667, 670, 699; special-purpose mineral, 387; regolith soil medium, 407 Al, see Aluminum Alaska, 306, 397, 696, 700, 701; settlement, 698 Albedo, floor of Grimaldi, 157, 158; lunar, 156; lunar distribution, 156; northwest of Lichtenberg, 159; northwestern Oceanus Procellarum, 159; Reiner Gamma, 158; western Oceanus Procellarum, 160 Alloy, Ca-Li, 427; Fe-Si, 411, 417, 421 ALSE, see Active Lunar Seismic Experiment ALSEP, see Apollo Lunar Surface Experiments Package Aluminum, abundance in anorthosites, 170; abundance in highland soils, 170; anorthite-derived, 170, 408, 424, 426, 427; concentrations around Mare Smythii, 167, 170; construction material, 136, 240; difficulty in extracting from regolith, 421; domes as shelters, 283; effects of lunar environment, 331, 332; HF acid-leaching process, 476; impact target, 142; lunar resource, 199, 227; metal, 423; olivine component, 365; phosphate sink, 521; propellant, 199, 206, 207, 433, 447, 450; pyroxene component, 365; reduction with sodium, 425; regolith as source, 361, 374; source of soil acidity, 519; spinel component, 368; support structure for regolith shielding, 581, 589; terrestrial production technique, 424; tobermorite component, 387, 389; use in collapsible structure, 263, 266; vapor deposition in zero-g, 333; zeolite component, 386 Ammonia, 97, 407, 432; conversion of fish wastes to nitrates, 515; fixing in distillation processes, 552; lunar atmospheric gas, 338; magnetoplasmadynamic propellant, 37-40, 42, 44, 45; nitrogen conversion by bacteria, 547; NASA potable water standards, 551; oxidation processes, 553; pyrolitic extraction from regolith, 395; recovery with ion-exchange processes, 554; removal by ECIS, 507; removal in water recovery from urine, 246; water distillation processes, 551, 552; working fluid in thermal control, 579, 580, 582, 585, 589 Angle of repose, 140 Anorthite, 170, 484 Anorthosite, 379, 365 Antarctica, 175, 244; analogy to space settlement, 237; atmospheric ozone, 244; comparison to the Moon and Mars, 243; exploration, 175; nuclear power, 176; Planetary Testbed, 243; plate, 244; research stations, 244, 245; wind-turbine power, 246 Antenna, Apollo LRV, 622; microwave communications, 27; microwave for heating regolith, 614; radar altimeter, 210; radio telescope, 322, 327; space station, 27 Anthropometry, 282 Apollo 11, 620; basalt, 170, 186, 189, 366, 370, 381, 469; candidate base site, 668; landing site, 159, 369; regolith, 190, 194, 610, 612; religious ceremony, 703 Apollo 12, 330, 620; basalt, 189, 368, 371; landing accuracy, 179; landing site, 168, 213, 343; lunar module interaction with Surveyor 3, 142, 331; retrieval of parts of Surveyor 3, 331; soil composition, 419, 420, 437, 610; Suprathermal Ion Detector Experiment, 184 Apollo 13, impact of S-IVB as seismic source, 343, 348 Apollo 14, 620; breccias, 362; landing site, 168; meteoritic component in rocks, 370; modularized equipment transporter, 158, 620; soil mechanics measurements, 140; soil samples, 433; Suprathermal Ion Detector Experiment, 184 Apollo 15, 214, 620, 622; basalt, 189, 365, 368; breccias, 362; gamma-ray spectrometer, 156, 190; heat flow experiment, 168; landing site, 172; laser altimeter, 209; LRV, 209, 620; lunar module ascent, 343; soil samples, 430, 433; Suprathermal Ion Detector Experiment, 184, 343; X-ray fluorescence experiment, 156 Apollo 16, gamma-ray spectrometer, 156, 190; highland samples, 362; landing site, 185; native iron in breccias, 371; soil, 430, 437, 443, 487; soil concrete component, 483; soil hydrogen retentivity, 443; soil ilmenite content, 441; sphalerite, 371; troilite, 371; X-ray fluorescence experiment, 156 Apollo 17, basalt, 189, 190, 366, 370, 429; candidate base site, 668; deep drill core, 444; double drive tube, 444; heat flow experiment, 168; high-FeO soils, 373; high-Ti basalt, 381; ilmenite, 367; landing site, 159, 194, 227, 580, 581; laser altimeter, 209; longest exposure to one-sixth g, 353; longest lunar-surface EVA, 569; LRV, 209, 632; Lunar Ejecta and Meteorites experiment, 334; lunar module impact, 185; Lunar Sounder Experiment, 203, 209; orange and black glass, 167, 195, 429, 437; region, 190, 191; regolith, 190, 372, 373, 395, 434, 443, 469; surface temperatures, 329; total traverse distance, 620 Apollo Lunar Surface Experiments
Package, 333; detection of S-IVB impact, 343; durability, 331; lunar atmospheric measuring instruments, 324, 337; magnetometer, 343 Apollo program, 32, 33, 111, 125, 172, 176, 249, 337, 339, 397, 677, 684, 688; LRV, 613, 619; NASA management structure, 687, 688; reference for lunar atmospheric modification, 337, 340 Apollo site selection process, 216 Ar, see Argon Architecture, 237-241, 255, 259, 281-285, 290; definition, 238, 281, 282; effect of lunar gravity, 282; history, 238-240, 284; lunar base, 275, 282, 283, 290; lunar subsurface, 293, 297; physiological considerations, 282; provision of essential life support, 284; role in building civilization, 238 Argon, solar wind flux (36Ar), 339; detection during lunar night, 338; endogenous lunar gas, 339; effect on cement hydration, 487; lunar thermal escape constant, 339; lunar-derived, 48, 66; regolith content, 393, 487 Aristarchus, objective of robotic traverse, 402 Armalcolite, 369 Artificial atmosphere, 342, 347, 348; density, 348; formation, 348; limitation by high escape rate, 342; transport processes, 349 Ascent, 140; abort option, 133, 175; acceleration requirement, 123; Apollo 15 LM, 343; dust mitigation operations, 332; emergency, 128; expendable vehicle, 104, 109; gravity losses compared to descent, 64; lunar, 15, 121; lunar trajectory, 111, 116; magma, 167; reusable vehicle payload, 109, 111; stage, 107, 179, 180; stage, Mars, 678; vehicle, 5, 9, 25, 27, 31, 34, 104, 109; vehicle redundancy, 148; velocity requirement, 123, 449 Asteroid, target for laser altimeter, 217; near-Earth, 411 Asteroid belt, 660 Astrometry, 319, 321 Astronomical observatory, communication system, 327; effects of lunar environment, 334; location criteria, 185; micrometeorite hazard, 332; power source, 326; radio, 163, 169, 174, 323, 325-327, 337, 349; site selection, 169, 176, 186 Astronomy, 181, 183, 315; advantages of lunar site, 319, 329, 334; contamination and interference, lunar, 324, 327, 347, 349; designated areas, lunar, 186; geological factors, 183; incompatible lunar operations, 186, 327; lunar activity, 104; lunar base mission, 475, 476; neutrino observation, 317; optical, 325; quantum-limited heterodyne, 637 Astrophysics, evolution of stars, 318; neutrino observations, 318; planetary, 159, 319 Atmosphere (life support), Biosphere II, 513, 514; carbon dioxide addition by plants, 535; carbon dioxide removal, 506; CELSS, 528, 531, 537, 543; containment in lunar architecture, 281-284, 289; effects of sealed chamber on crop growth, 541; effects on compaction of concrete, 491; lunar habitat, 430, 508, 519, 522, 548, 549; nitrogen component for lunar base, 520; purification with biological systems, 516; regenerated, 537; removal of undesirable volatiles, 532; revitalization, 126; spacesuit, 660; use of lunar carbon, 470 Atmosphere (lunar), 28, 183, 186, 204, 212, 217, 251, 268, 315, 329, 337-340, 344, 348, 361, 380, 433, 536, absence, 322; absence of neutral gas, 322; Apollo data, 337, 347; artificial, 183, 184, 186, 342, 347-349, 472; charged-particle density, 349; contamination, 184-186, 210, 339, 347, 348; daytime, 329, 344; density, 338, 341, 342, 347, 349; diffusive transport mechanism, 349; dissipation, 347; effect of Apollo missions, 184; growth, 186, 341, 342, 347, 349; helium component, 339; impact-vapor component, 183; interference with astronomy due to lunar base, 347; lack of absorbing components, 329; lifetime of component gases, 343; long-lived, 342, 347; loss through solar wind stripping, 347; lunarderived, 407, 480, 481, 520, 547; meteoritic shield, 330, 371; modification by lunar base activities, 337, 340, 341, 344, 349, 433; natural sources, 337; neutral component, 321, 339, 349; nighttime, 329; nonexospheric mass, 342; observations of Apollo exhaust gases, 343; optical quality at lunar surface, 337, 344, 349; plasma-shielding effects, 347, 348; raman scattering, 202; response to gas releases, 344; solar wind as source, 338; solar wind component, 183; solar wind removal of gases, 341, 342, 347; solar wind shield, 339; sources, 339, 347; steadystate model, 347; steady-state near lunar base, 349; thermal escape, 339, 342; total mass input rate, 337; transient, 324, 339 Atmosphere (martian), 210, 678, 680 Atmosphere (terrestrial), 179, 240, 244, 293, 316, 317, 319, 329, 338, 342, 519, 520, 549, density, 342; impediments to interferometry, 321; loss of helium-3, 468; threat to tethers, 58 Australia, 402, 514, 516, 697-701, history, 697-701; lunar base analogy, 697, 698; settlement, 698, 699; solar-electric automobile race, 402 Ba, see Barium Bacteria, radiation resistant, 241 Bamboo, building material, 296; transport as seeds, 296; use in lunar biosphere, 296, 297 Barium, interaction with solar wind, 348; feldspar component, 365 Basalt (lunar), ages, 164; Apollo 11, 170, 189; Apollo 15, 365; association with pyroclastics, 170, 171; chromite component, 368; coring, 171; electrolysis, 419; electrolysis of iron-rich simulant, 418; feldspar compositions, 365; genesis, 366; high-titanium, 170, 186, 187, 190, 222, 227, 373, 381; ilmenite, 159, 160, 366, 368; KREEP content, 168, 171, 172, 362; lava tubes, 287, 288; low-titanium, 189, 190; lunar, 156, 189, 362, 368, 380, 393, 443; magma, 171; mare sulfur content, 429; olivine, 365, 380, 381; petrogenesis, 365; plagioclase, 365; pyroxene, 362, 365; relationship to mascons, 168; spinel, 368; sulfide components, 371; titaniferous, 159, 190, 369, 469; troilite, 370; Tsiolkovsky, 187; very-low titanium, 190, 362; very-high potassium, 362; vesicular, 443; water holding capacity, 520; xenolith component, 380 Basalt (terrestrial), 362, 380; alkali, 380; Icelandic, 216 Basalt flows, 173, 185; Mare Smythii, 163, 164, 168, 170,171; Orientale Basin, 168 Base construction, 29, 31, 33, 34, 181, 213, 273, 281, 519, 673; mobile work platform, 633; mission, 35, 36; potential of calcium cements, 289; relevance of local roughness, 213; use of concrete, 273, 497, 499; use of tension-compressed columns, 270 Base design, 26, 135, 141, 180, 281-283, 505, 597, 602; architectural semiotics, 284; relationship to Biosphere II, 297; relationship to spacecraft design, 283; validation, 673 Base site, 170, 171, 173, 179, 180, 213; geological field work, 311; geological usefulness, 222; landing pad, 139, 143; lunar farside, 668; lunar limb location, 163; Mare Smythii, 164, 170-173; polar, 178; potential hazards, 214; selection, 143, 163, 171, 209-214, 216, 217, 311; survey, 178; teleoperation node, 171; traverses, 168, 311; verification, 143, 311; visibility of Earth, 140 Basin, crustal thickness, 173; ejecta, 172, 308, 469; formation, 380; geology, 172; impact, 362; mare, 380; mascon, 168, 173; radial subsurface thermal structure, 173; seismic structure, 173; subsurface velocity structure, 173 Base maintenance, 3; mission, 35 Battery, 668; Apollo LRV, 621, 628-630; rover, 70; Na/S, 246, 326, 431; power storage system, 593, 594, 596; sulfur-based, 431 Be, see Beryllium Bed rest, antiorthostatic, 570; changes in bone-mineral content, 573; physiological simulation of weightlessness, 570; skeletal effects, 569-571, 573 Bedrock, excavation, 171; interface with regolith, 171; ore deposits, 408; source of regolith, 330 Beryllium, 639 Biology, detection on other planets, 351; gravitational, 239, 356 Biome, 514 Bioreactor, conversion efficiency, 674; use in CELSS, 675; water treatment, Biosphere, 293; artificial, 293, 295-298, 393; CELSS applications, 294; lunar habitat, 296; requirement in space travel, 293; terrestrial, 241, 293, 296 Biosphere II, 297, 518; agriculture, 515, 516; animals, 515; arthropod species, 516; atmosphere, 513, 514; biomes, 514; construction, 516; crew, 516; description, 513; ecosystems, 517; equilibrium biomass, 514; fungus species, 516; hydrosphere, 513; insect species, 516; marine systems, 513; mission control center, 514; pesticides, 516; plants, 516; power sources, 513; project goals, 513; rain forest analog, 514; test module, 516-518 Boulders, 186, 326 Breccia, gas concentration, 438, 440; importance of friability, 309; lunar soil component, 487 Bremsstrahlung, 75, 78, 79 Building, code, 268, 270, 277; complex, 261; components, 245, 287, 296; illumination, 303; lunar, 290, 701; materials, 261, 296, 697; multistory, 261, 265; site, 71; structure, 261; technology, 261 Bulk composition, Moon, 173 Ca, see Calcium Cadmium, abundance in lunar pyroclastic deposits, 431; photocell component, 431 Calcium, alloy with lithium, 427; anorthosite source, 167; armalcolite component, 370; cement, 289, 483, 484, 486; essential plant ion in lunar soil, 520; metal, 427; olivine component, 365; phosphate sink, 521; propellant, 206; pyroxene component, 206, 363, 365; reducing agent, 424, 425, 427; smectite saturation, 389; tobermorite component, 386; zeolite component, 388 Capital, costs, 47-50, 52-54 Carbohydrate, 528, 529; human dietary need, 525; major food type, 525; potato source, 529 Carbon, 528; abundance in regolith, 393-395, 411, 430, 609, 610; activated, 505, 552; adsorption beds, 552; by-product of helium-3 production, 471, 472; component of methane in lunar regolith, 610; compounds, 338, 550; conversion to carbon dioxide, 553; correlation of abundance with soil maturity, 437; correlation with L/FeO, 373; export to Moon from Earth, 504; flow through CELSS, 525; gases for use in agriculture, 408; loss through photorespiration, 297, 531; lunar and terrestrial abundances compared, 393; lunar base requirement, 473; mineral processing reagent, 423; mining, 394; organic, 351, 554; organic content of planetary samples, 351; pyrolitic extraction from regolith, 394, 470; solar wind-derived, 338, 361, 369, 372, 373, 411, 421, 609; steel, 136; total lunar abundance, 393; use in lunar manufacturing, 470; use in regenerative life-support systems, 177; waste conversion, 561; woven fibers, 275, 277, 279 Carbon dioxide, 80, 522; abundance in regolith, 610; addition to atmosphere by plants, 535; adsorption on smectite surfaces, 389; adsorption with
molecular sieve, 615; assimilation by plants, 520, 537; buffer mass reservoir, 525; by-product of helium mining, 470, 472, 475, 549, 616; combustion product, 395; concentration in crop-growing area, 522; concentrator in ECLS, 504; conversion from urea, 553; cycling period in Biosphere II, 514; desorption of molecular sieve, 506; diurnal fluctuations in closed agricultural system, 534; effect of concentration in potato growth, 543-546; fixation by plants, 297, 520, 522; fluxes during crop growth, 525, 528; human production vs. plant usage, 520; laser, 642; loss due to atmosphere leakage, 549; lunar atmospheric gas, 329, 338; lunar-derived, 547; maintenance during CELSS operation, 528; martian atmosphere, 638; monitoring during CELSS operation, 528; natural laser, 638; normal atmospheric concentration, 297, 520; plant requirement, 539; plant respiration rate, 549; product of oxygen plasma reactor, 561; production from methane, 521; production in anaerobic digestion process, 521, 522; pyrolitic extraction from regolith, 184, 395, 610; regenerative removal unit, 506; relationship between availability and crop harvest, 520; relationship to lunar transient phenomena, 408; removal by ECLS, 504, 507; removal from atmosphere, 126, 177, 388, 504, 506, 521, 543; removal in CELSS, 543; requirement for lunar base agriculture, 549; requirements by different crops, 528; response of plants to atmospheric concentration, 525; role in photosynthesis, 541, 543; Sabatier reduction unit, 506; separation from hydrogen, 521; separation from methane, 521; source of oxygen, 480, 507, 508; storage for photosynthesis, 296; storage for transportation, 506, 615; supply at soil surface, 520; symbiotic fixation, 520; uptake by crops, 522, 528, 534; utilization, 542; wastes as source, 520, 521 Carbon monoxide, by-product of helium mining, 475; relationship to lunar transient phenomena, 408; removal from atmosphere by biological systems, 517 Carbonate, equilibria in soil-plant systems, 519 Carbothermal reduction, regolith processing, 476 Cash-based operation, lunar base conversion, 700 Cd, see Cadmium CELSS, 239, 299, 517, 525, 530, 531, 537, 538, 544, 546, 551, 556, 563, 673, 674; application of solar optics, 297; biomass production, 544, 546; bioreactor, 675; bioregenerative, 519; candidate crop plants, 543; control system, 538, 543; crew size for stability, 676; crop management, 528, 546; demonstration, 556, 673, 674; ecological equilibrium, 538; electrical lamps, 543-545; environment tradeoffs, 544; food plants, 531, 534; gas exchange, 388; habitat, 675; integration into lunar habitat, 296; limiting factors, 543; mass of equipment required per person, 700; module, 300, 301, 302, 303; optimization of productivity, 543; plants, 534, 543; required pressurized volume, 294; suitability of potato plants, 543; use of lunar-derived sulfur, 433; use of solar radiation for plant growth, 544; use of zeolites, 387; waste-material separation, 356 Cement, 389, 483, 497; bond with aggregate, 487; component of concrete, 385, 389, 484, 490, 491, 497; constituents, 289, 483, 484, 486; dehydration reactions, 498; effects of inert gases on hydration, 487; hydration, 491; mass requirement for concrete processing, 273; paste, 491; plant, 494; Portland, 484, 489-491, 498; production, 267, 489; use of pyroclastic materials, 228; use in lining walls of subsurface facilities, 499; use of frozen paste in mixing concrete, 490 Centrifuge, centrifugal force gradient, 354; Coriolis forces, 354, 355; design considerations for human use, 354, 355; high-g adaptation data for dogs, 573; lunar base, 353, 355, 356; motion sickness produced by head movement, 355; regular use to decrease adaptation time, 355; sleep in rotating gondola, 355; space station, 354, 355 Ceramic, polyaluminate electrolyte, 432; radiation shielding, 408 Cesium, in tobermorites, 387; removal from water by zeolites, 388 Chemical engineering, 647 Chemical processing, 398, 405, 475, 476 Chemistry, basalt, 362, 363; fluorine, 423; industrial, 228; lunar ionosphere, 339; plagioclase, 365; pyroxene, 363, 365; remote sensing, 308; spinel, 366, 368; stellar outflow, 318; troilite, 371 Chlorine, abundance in lunar pyroclastic coating, 430; appearance in oxygen-plasma conversion, 561; mineral processing reagent, 423; paucity on Moon, 361; potential lunar sources, 669; water disinfection, 552, 553 Chromite, 379 Chromium, 365, 366, 368, 370, 379; basalt component, 216; heavy metal in lunar soil, 520; layered igneous complex, 379; use in distillation processes, 552 Church, psychological link to Earth, 703 Cislunar space, 67, 238, 239, 399 Civilization, 238, 239, 281; interstellar travel through cloning, 643; lunar, 237, 240, 241; space, 237, 239 Cl, see Chlorine Co, see Cobalt CO2, see Carbon dioxide Cobalt, 365, 412; component in native Fe metal, 371; lunar-derived, 408 Colonies, bacterial, 296 Colonization, interstellar, 637; lunar, 3, 4, 47, 54, 199, 206, 261 Colony, lunar, 303, 347, 385, 433, 551, 685, 686; manufacturing, 472 Comet, lunar atmospheric component, 183; origin of Reiner Gamma, 158 Commercialization, fusion power, 466, 468; potential of lunar base, 475, 479, 481, 482 "Common heritage of mankind" provision, absence in Outer Space Treaty, 692; cause of concern for spacefaring nations, 692; concept in international space law, 691; confusion with "province of all mankind" provision, 692; interpretation of US government, 692; limitations in Moon Treaty, 693; political aspects, 692; Moon Treaty, 691, 692; Sea Treaty, 691 Communication, 34, 95, 133; continuous link, 140; delay in Mars mission, 660, 677; engineered planetary lasers, 638, 639; hard line, 137; importance to isolated crew, 660, 675; interstellar, 637, 638, 643, 644; line-of-sight relay stations, 311; lunar base link to Earth, 163; lunar outpost to main base, 170; lunar satellites, 327; observatory antennas, 327; required for astronomical observatory, 327; teleoperation, 311; time, 393; units as impediments to astronomy, 325 Communications, Apollo LRV, 622, 628, 631 Communications satellite, 35, 44; Echo, 249 Communities, ecological, 533; extraterrestrial, 697; lunar, 697; martian, 697; microbial, 516, 531-533, 536; rhizosphere, 532; sustaining on the Moon, 239 Community, Alaskan development, 700; economic limitations, 697; lunar, 303, 703, 704; lunar analogs, 704; lunar challenges, 703; number of members for stability, 675; self-support, 697, 700 Community church, American, 703, 704; arena for discussions, 704; lunar, 703; psychological link to Earth, 703; role in alleviating social tensions, 703; role in developing social relationships, 703 Computer, control of ECIS, 296; control of lighting for plants, 539; control system for CELSS, 538; navigation system of Apollo LRV, 628; reduction of crew workload, 33; role in telerobotics, 603; sensors in Biosphere II, 517 Concrete, 240, 267, 289, 290, 389, 489; advantages as lunar construction material, 489; compaction, 490, 491; component materials, 273, 289, 489; compression, 267, 269; cracking due to air leakage, 272; curing, 490; desirable qualities, 267; effects of gravity, 489; effects of vacuum, 269, 270, 489, 490; hydration, 490, 491; hydrogen component, 273; mixing procedure, 490, 491; plant, 268; prestressed, 267-269, 273, 274; production method, 489-491; shielding, 240; structures, 267, 273, 274; nonbearing member, 491; precast, 267, 268, 273; recapture of free moisture, 273; regolith aggregate, 259, 389; reinforced, 269, 289; tank, 267; tensile stress, 269; tension member, 270; truss construction, 273; use in structural members, 491 Confinement, atmosphere, 282; conditions at lunar base, 287; consequence of life at lunar base, 703; effects on personality, 703; fusion reaction, 79; geometry in fusion rocket, 76, 78; magnetic "bottle" in fusion reactor, 76; plasma energy time, 79 Construction, 241, 259, 275, 315, 322, 232, 326, 489-491, 519, 633, 673, 679; Alaskan, 698; Antarctic, 245; Biosphere II, 516; capabilities, 266, 289; completely shielded base, 252; concrete, 267, 273; conditions in lava tubes, 289; conventional practices, 301; difficulty, 283; danger to workers, 289; effects of communications time delay, 309; efficiency 289; equipment, 633, 679; EVA, 250, 289, 296; floating foundation, 273; gantry frame, 275; history, 294; international treaty questions, 283; lava tube options, 289; loading conditions, 267, 268; materials, 259, 289, 356, 385, 389, 489, 647, 700; manual operations, 261; martian, 678; masonry, 289; methods, 259; mobile gantry, 275; mobile work platform, 633, 634; orbital, 237, 341, 604, 662; planetary methods, 679; regolith difficulties, 273; resources, 240; shield wall, 275; solar reflectors, 613; spaceframe, 289, 290; subsurface, 296; surface, 284, 285, 296; surface stability, 337; technology, 285, 325; terrestrial analogs, 296; terrestrial masonry, 240; transportation, 275; verification of integrity, 275; workers, 289 Controlled Ecological Life Support System, see CELSS Copernicus Crater, objective of robotic traverse, 402 Copper, discovery in Alaska, 698; magnet component, 77; rarity on Moon, 421; use in distillation processes, 552 Core, Apollo samples, 373; deep drill, 444; deep regolith sampling, 609; drilling device, 309; galactic, 316; globular cluster, 318; lunar, 173, 321; lunar base structure, 267, 270, 272, 273; protostellar, 318; source of perturbations in Earth's rotation, 321 Core sample, collection by autonomous vehicles, 604; Shorty Crater, 444 Corn, efficiency of carbon dioxide fixation, 297, 520, 522; suitability for lunar biosphere, 297 Cosmic ray, causes of defects in regolith material, 611; flux during solar flare events. 173 Cost, burden of base crew rotation, 450; commercial sample return mission, 402; comparison of Moon- and Earth-derived propellants, 448; delivery of lunar oxygen to Earth orbit, 453, 457; deployment of astronomical observatory, 186; deuterlum-helium-3 fusion reactor, 466; Earth-Moon transportation, 398, 470; ECLS, 503;
electricity from fusion power, 466; expendable module, 15; flight-system, 175; fusion power plants, 473; helium-3, 466; initial ECLS, 503; large-scale lunar development, 284; life-cycle, lunar transportation system, 32; life cycle, space transportation system, 448; lunar base construction, 35; lunar base, 137; lunar helium-3, 472, 473; lunar lander, 116, 124, 130, 131; lunar lander repair, 52; lunar lander return to LEO, 123; lunar mining, 550; lunar production of helium-3, 470; lunar-produced aluminum, 447; lunarproduced oxygen, 447, 457; maintenance, space shuttle, 32; mass launched per person at lunar base, 700; metabolic due to wearing spacesuit, 662; mining, 289; mobile miner, 434; operating, expendable transportation system, 15; operating, lunar lander, 52; operating, reusable transportation system, 11; operating, space shuttle, 31; operating, transportation system, 49; orbital maintenance facility, 32; orbital solarelectric power, 401; orbiting stations, 53; OTV, spare parts, 64; payload delivery from Earth to Moon, 249, 296, 450, 543-545, 549, 593, 602; pneumatic and air-supported structures, 249; production of lunar propellants, 448; replacement, expendable transportation system, 11; reusable transportation system, development, 11, 15; ring-laser gyro, 126; round trip to Moon per passenger, 450; solar electric automobile race, 402; solar-powered orbital transfer vehicle, 43; space transportation, 116, 119, 249, 319, 393, 401, 447, 448, 450, 457, 699; surface-based radar, 126; teleoperated rover, 402; telescope, 325; terrestrial electric power, 401; tether platform, development, 67; transportation, 31, 35, 49, 51-53, 64 Cr. see Chromium Crater, chain, 220, 221; continuously shadowed, 164, 393; density, 155, 156, 161, 164; dump site, 228; ejecta, 171, 185, 219, 308; fractured floor, 167; frequency curve, Mare Smythii, 164; micrometeorite, 371; penetration of lava tube, 220-227; rays, 171, 221; rille origin, 227; simple, 213; walls, 308 Crater counts, 140 Craters, 139, 142 Cryogenic fuel, lunar production, 356 Cryogenic storage, OTV depot, 99 Cryogenics, fuel-cell reactants, 668; handling in space, 20, 23; spacestorable, 23 Cs. see Cesium Cu, see Copper D D, see Deuterium Dark mantle deposits, 170-172, 227, 434 Dark mantle materials, 195 Deimos, mission, 453, 678, 679; resource potential, 393, 411 Density, 77; bone, 570, 571, 575; charged particles in lunar atmosphere, 349; chromite, 380; concrete, 489; dark matter in universe, 316; difference between crystal and melt, 380, 381; electron density at lunar surface, 339; electrons in plasma reactors, 560; electrostatically levitated dust column, 330; fluctuations in early universe, 317; gas related to ultraviolet optical depth, 349; hydrogen, 121; helium atoms in regolith, 610; laser topographic observations, 209; lunar atmosphere, 186, 338, 340, 342, 343, 347-349, 350, lunar atmospheric ions, 340, 347, 349; lunar module exhaust, 343; lunar transient atmosphere "cloud," 324; neutral atmospheric gases, 337; olivine, 381; perturbation leading to galaxy formation, 316; propellant, 120, 130; regenerative fuel cell energy, 596; regolith, 71, 158, 185, 251, 273, 393-395, 520, 612; Reiner Gamma surface material, 158; solutions in distillation columns, 616; subsurface structure of Smythii Basin, 168, 173; tether material, 55; variations in liquid-phase turbulence, 649 Deuterium, fusion fuel, 75, 78, 81, 609, 667; resonance lines, 317 Deuterium-helium-3, cooling requirement, 466; efficiency of energy conversion, 466, 477; fuel costs, 466; fuel cycle, 462, 468, 472; fusion cycle, 464, 466, 481; fusion experiment, 460-462; fusion fuel, 461-463; fusion power development, 482; fusion power plant, 462, 463, 465, 466, 472; fusion reaction, 460-462, 464; fusion reactor, 462, 463, 465, 466; impact on electric power economy, 462; neutron production, 461; plasma, 460-462, 473; radioactivity associated with fusion cycle, 462, 463, 465, 466; tokamak studies, 473 Dielectric constant, plasma, 348 Disease, acquired immunity, 533; factor in lunar base crew size, 674; human communicable, 533; organisms in Mars mission spacecraft, 660; osteoporosis, 661; plant, 516, 532; release into lunar base environment, 519; water system as source, 552 Distillation, columns in low-gravity environments, 616, 650; cryogenic enrichment of helium-3, 616; integrated membrane evaporation, 551; lunar systems, 552; processes, 551, 552; vapor compression, 246, 551; water polishing, 552; wick evaporation, 551 Docking, 22, 47, 88, 99, 179; adapter, 146; arcing hazard, 99; automated, 17, 20, 22, 23, 63, 126; hazard, 95; mechanism, 99; operations, 90; port, 34, 85-88, 93; techniques, 99 Dome, concrete form, 499; habitable structure, 493, 494, 499; lunar module shelter, 137; pressurization, 499; volcanic, 225 Drill, assemblies on mobile work platform, 633, 634; coring device on robotic field geologist, 309; deep string, 393; platform, 634; regolith cores, 311 Drive tube, Apollo 17, 195 Dunite, layered intrusive complex, 379; olivine abundance, 365 Dust, 69, 71, 283, 330, 669, agent in decreasing reflectance, 33 Dust, 69, 71, 283, 330, 669; agent in decreasing reflectance, 331; atmospheric, 210; circumstellar, 638; contamination, 302, 303, 330, 334, 660, 669; degradation of thermal surfaces, 622, 626, 629; detector array, 334; dynamic effects, 334; factor in lunar surface operations, 145; global martian storm, 210; hazard to Apollo LRV, 622, 624; hazard to mechanical systems, 606; interference with astronomy, 183, 185, 186, 329; interstellar, 638; levitation, 330, 334; low-velocity, 334; mobilization by rocket exhaust, 71, 142, 186, 330, 332, 334; possible presence in lunar atmosphere, 344, 347; problem for lunar surface operations, 622; protection of optical elements, 332, 334; shielding, 329, 332-334; source of diffuse X-ray background, 317; Surveyor 3, 331; ubiquitous nature, 333, 334 Dust lock, contrasted to air lock, 669 E Earth orbit, attained from lunar launch, 3, 5, 6, 12, 15; centrifuge facility, 354; debris hazard, 660; difficulty of radio astronomical observations, 317; ease of resupply compared to Mars mission, 660; elliptical, 47, 48, 50, 52-54, 61, 65; EVA, 603; lack of sensible atmosphere, 330; maintenance facility, 11, 31, 32, 34; site for high-precision astrometry, 321; space transportation node 102, 293, 319, 394, 593, 677; variable gravity research facility, 355 31, 34 Eclipse, solar, 28 ECLS, 29, 503-507, 509, 510; carbon dioxide removal, 506; city utility, 506, 507; closure of food loop, 504; crew size, 507; crew time requirements, 507; effects of gravity, 505; effects of lunar base composition, 506; expendables, 508; habitability module, 508; integration costs, 503; likelihood of self-sufficiency, 504; logistics, 503; lunar, 504, 505, 510; material losses, 504; mission-specific, 510; nonregenerative, 503; nuclear power integration, 505; oxygen recovery, 504, 508; power requirements, 505; prohibition against venting to lunar environment, 506; regenerative, 503-505, 510; relationship to lunar base layout, 505; reliability, 508; resupply interval, 508; safety, 507; space shuttle, 503; space station, 504, 505, 507; subsystem failure, 508; support of multiple habitats, 506; use of lunar environment, 506; waste heat, 505; water recovery, 506 Ecology, global, 514; systems, 514; nonterrestrial, 241 Ejecta, 156, 160, 161, 171, 172; abrasive effects, 142; basin deposits, 172, 308; blanket, 185, 212, 213; blocks, 213; brecciated highland crust, 308; cratering on aluminum, 142; dark-halo crater, 172; deep sampling, 157; engine blast, 144, 145, 275; flux, 142; Meteor (Barringer) Crater, 213; Orientale Basin, 157; protection, 145; threat to optical surfaces, 330; trajectory, 142 Electric propulsion, 35, 42, 56; ion system, 37; mass reduction, 45; module, 39; options, 35, 37; OTV, 35-37, 44, 401; power processing unit, 39 Electrical engineering, 675 Electricity, by-product of water production, 668; conversion to photosynthetically active radiation, 544; fuel cells, 126, 246; generation, 69, 75, 76, 245, 614; storage, 246, 602; sunlight conversion, 536; water-heating requirement, 597 Electrolysis, 423, 424, 427, 428; magma production of oxygen, 519; production of gaseous fluorine, 424, 427; production of sodium, 427; reduction of fluorides, 423; sequential, 521; water, 64, 504, 549 Electromagnetic energy, laser thermal engine, 48; lunar sounder, 203; radio frequency, 203 Electromagnetic field, use in plasma reactor, 560 Electromagnetic sounding, 173, 199 Electromagnetic spectrum, low-frequency radio array, 319; robotic sensory capabilities, 308 Electron, collisions with molecules, 560; density at lunar surface, 339; density in plasma reactors, 560; reacceleration as source of low-frequency spectra, 317; replication microscopy of Surveyor 3 tubing, 332; temperature in plasma reactor, 560; transmission microscope, 372 Electrostatic charging, source of dust disturbance; 331 Emergency, 98; airlock, 256; Apollo LRV driving mode, 624; ascent, 128; equipment cooling, 581; evacuation, 100; repressurization of lunar base, 250, 507, 508; return to LM requirement during Apollo, 622; safe haven, 89, 597; warning device, 98 Emotional behavior, effects of confined habitat, 675 Energy conversion, during aerobraking, 64; efficiency of GaAs photovoltaic device, 594; electric to microwave efficiency, 614; Stirling system, 247; thermoelectric system, 247 Energy requirement, pyrolitic extraction of volatiles from regolith, 613 Energy source, methane, 675; microwaves for heating regolith, 614; nuclear fusion, 609; solar, 297; solar photovoltaic devices, 614 Energy storage, 58, 72; batteries, 176; electrical, 127, 148; lunar lander, 593; orbital, 65, 66; regenerative fuel cell, 596; night operation of VLFA, 326 Engine, ablative, 124; advanced space, 39; aluminum fuel, 450; Apollo LM, 123-125; conventional rocket, 48; cryogenic, 13; efficiency, 5, 15; failure, 124, 125; ion, 48, 54, 66, 67; laser propulsion, 70, 71; laser
thermal, 48; blast effects, 135, 136, 139, 141, 142, 151, 275; lander throttling ratio, 125; lunar lander, 63, 134; lunar module, combustion products, 343; lunar module, descent, 180, 331, 332; mass, 62, 71; multipurpose lander, 119; N_2O_4/MMH , 125; O_2/H_2 , 63, 124; OTV, 62, 63, 125; pressure fed, 124; pump fed, 124, 125; RCS, 125; regenerative cooling, 124; relationship between thrust and chamber cooling requirements, 125; reusable, 20; RL-10, 13, 113, 181; rocket, 332; service propulsion system, 180; space shuttle, main, 125; specific impulse, 15, 63, 71; technology, 3, 13, 63; temperature, 63; thrust, 71; XLR-132, 180 Engineering, civil, 279; critical issues for lunar astronomical observatories, 323; electrical, 675; environmental control, 238; geological, 238; human factors, 97, 237; lunar research, 701; planning for protection of astronomical optics, 329; structural, 238, 275; system, 683, 684, 686, 687; system safety, 98; tether, 58 Environment, Antarctic, 243, 245; artificial gravity, 356, 679; astronomical, 329, 334, 349; contamination, 184, 519; controlled, 228, 301, 541, 543; damage, 186; effects on structural design, 251; erosion, 331; gravitational, 616; hard radiation deflection, 173; human impact, 199; lava tube, 288, 289; low Earth orbit, 301, 329, 332; lunar, 148, 212, 237 241, 251, 266, 267, 283, 294, 308, 323, 329, 332, 334, 337, 339, 341, 343, 344, 347, 348, 380, 385, 489-491, 506, 553, 579-581, 589, 603, 606, 607, 611, 613, 620, 633, 667, 669, 674, 677-679, 703; lunar base, 579, 581, 604; magnetically shielded, 661; martian, 574, 677; martian thermal, 660; microbial paradise, 506; micrometeoroid, 327, 332; nonhabitat facilities, 506; optimal gravity, 569; optimal strain, 571; oxidizing, 653; plasma, 337, 339; potato growing, 543; reducing, 369, 370, 372; rotating centrifuge, 354; seismic, 231-233; seismic, terrestrial, 232; shirtsleeve, 34, 250, 619; solar, 90; source of microorganisms, 533; south pole, 581, 584; space, 55, 97, 125, 237, 241, 253, 284, 301, 303, 329-333, 547, 569, 570, 660, 694; space station, 504, 579, 582; surface, 288, 293, 329, 330, 334; Surveyor 3 exposure, 331; terrestrial, 519, 522; thermal, 135, 327, 582, 589; vacuum, 99, 136, 253 Environmental control, 116, 126; lava tube, 219; lunar base, 503; space station, 296, 554 Environmental Control and Life Support, see ECLS Environmental control engineering, 238 Environmental control system, 503, 559, 597 Escape velocity, compared to exospheric thermal velocity, 342; compared to thermalized hydrogen and helium, 339; lunar, 361; Phobos, 662; relation to atmospheric mass loss rate, 342; relation to thermal evaporation, 347 Europium, anomaly, 366; plagioclase component, 365 EVA, see Extravehicular activity Evaporation, cause of porosity in concrete, 490; dispersal of transient atmosphere on Moon, 324; Jeans' escape, 337, 342; membrane, 246; prevention in concrete with airtight covering, 490; production of thin-film solar cells, 431; regolith heating, 615; thermal loss of atmosphere, 347; thermoelectric integrated membrane, 551; vapor-compression distillation, 551; water from concrete, 498, 499; water reclamation system, 505; wick, 551, 552 Exobiology, lunar laboratory, 351 Exploration, Arctic and Antarctic, 175; autonomous, 604; deep-space, 653; geological, 164, 171, 172; geophysical, 172, 174; geoscience, 170; goals for robotic geologists, 307; human, 88, 207, 385; long-term space, 574; lunar, 3, 25, 35, 64, 101-104, 159, 170, 175, 199, 207, 307, 308, 311, 312, 353, 356, 619, 633, 667, 681; lunar orbital, 207; martian, 353, 677-679, 681; planetary, 243, 293, 385, 673, 681, 688; regolith, 189, 195; robotic, 25, 96, 103, 109, 171, 199, 311, 688; solar system, 207; space, 75, 691, 692, 703; traverse, 171 Explosion, 318 Export earnings, early Alaskan analogy with lunar base, 700; early Australian analogy with lunar base, 697, 700 Exposure age, lunar soil, 372, 373 Extinction, flame tip in microgravity, 655; infrared due to interstellar dust, 638; microbial species in isolated human groups, 533 Extraterrestrial material, asteroidal source, 393 Extravehicular activity, 84, 85, 88, 143; Apollo, 353, 622, 625; construction, 250, 289, 296; contaminated spacesuit, 99; control center, 84, 88; cost, 250; crew, 27, 28; Earth-orbital, 603; electrical arcing, 99; hazard, 95, 99, 134; longest lunar, 353; lander servicing, 151; lunar surface, 146, 178, 275, 277; micrometeoroid protection, 84; operations, 143; orbital depot, 92, 93; propellant loading, 89; retriever robot, 99; spacesuit, 90, 660; traditional caution, 289; thermal protection, 84; transfer from lander to base, 136, 143; vehicle maintenance, 90 F F, see Fluorine F, stellar spectral type, 637 Farming, early Australian, 699; fish, 245; lunar soil, 519; part of integrated system, 521; shrimp, 245 Fault, detection, 125, 510, 606; thrust, 232 Fault system, 222 Fe, see Iron Feldspar, component of anorthosite, 362; component of highland soil, 184; glass composition, 184; plagioclase, 365; potassium, 365 Fertilizer, anaerobic digester effluent, 521; conversion of solid human waste, 675; product of bioreactor, 674, 675; use of algae and bacteria, 296; use of lunar sulfur, 228; use of smectites, 389 Fiberglass, components of Apollo LRV, 629; decking, 263, 266; lunarderived, 519, 520 Fiber ootic network 26, 27 Field geology, basic tasks, 309; goal, 171; lunar, 307; robotic, 308, 309, 311 Field study, communications time delay, 309; dark-mantle deposits, 171; geologic, 174, 307-309, 311, 312; Purkyne U Crater, 171; robotic, 307, 309, 312; simultaneous human and robotic, 311 Field work, human participation, 308, 309; lunar, 309; planning, 171; telepresence robot, 309; terrestrial, 307, 309 Finer fraction, importance, 373 Fines, energy requirement for volatile extraction, 613; pyrolitic volatile extraction, 612, 613; solar wind content, 361, 395, 430 Fire, Antarctic nuclear plant, 176; detection and supression system, 126; electrical arcing, 99; hazard, 99, 100, 301; safety, 653, 657 Fire-fountain, eruptions, 167, 429 Flame, 654, 655; behavlor at reduced gravity, 653, 655; characteristics, 656; chemistry, 657; dependence on oxygen diffusion in microgravity, 655; diffusion, 653; effects of bouyancy, 653, 654; effects of pressure and oxygen, 655; factors in extinction, 655; factors in spreading, 655; gas-jet diffusion, 653, 654, 656; height, 656; laminar behavior, 654; low momentum, 657; morphology in microgravity, 655; propane in microgravity, 655; radiance, 655; radiation in microgravity compared to normal gravity, 655; sheet, 653; structure, 657; suffocation, 655; turbulent behavior, 654 Fluidized bed reactor, 614-616; hydrogen extraction from regolith, 614 Fluorine, abundance in lunar pyroclastic coating, 430; bonds with metals, 424; containment by nickel, 424; exchange reaction with oxygen, 424, 425; extraction from fluorite, 424, 425, 427; mineral processing reagent, 423; paucity on Moon, 361; potential lunar sources, 669; properties, 423; reagent element, 398; recycling, 426; storage, 427; transportation as NaF, 427; types of reactions with oxygen, 424; use in oxygen production, 423; use in processing uranium, 423 Food, agricultural source in Biosphere II, 515; CELSS crop plants, 531, 533; crop biomass for fish, 521; crop combinations, 537; crop growth rate, 537; crops for lunar base, 525; cultivated chlorella, 297; daily requirement per crew member, 296, 520, 534; higher plants in CELSS, 543; hydroponic systems, 519; intake compared to stool weight, 564; loop in ECLS, 504, 505; lunar base requirement, 433; lunar crop enhancement, 356; lunar export to space station, 670; minimum requirements for lunar base, 520; plants as source in bioregnerative system, 519; potatoes, 543; preparation, 597; processing, 547, 548, 549; production and carbon dioxide loss, 549; production and nitrogen loss, 548; production and oxygen loss, 549; production at Bios-3, 517; production at lunar base, 519-522, 531, 532, 536, 537, 547, 551, 556, 670, 700, 701; production from lunar soil, 520; production in early Australian colony, 698, 699; production using algae and bacteria, 296; rabbit, 534; rabbit meat, 534; recycling, 549, 559; required production area, 520; required volume for hydroponic production, 296; space required for plants, 534; supply from Earth, 505, 507, 670; webs in Biosphere II, 515 Fuel, 9, 71; deuterium-helium-3, 75, 76, 78, 80, 81; deuterium-tritium cycle, 79; economy, 48; fissile, 81; fusion, 75; fusion cycle, 75, 76, 81; mass required by fusion rocket, 78-79; proton-proton, 80; radioactive, 609; reduction by high specific impulse, 15; reduction by use of aerobrake, 13; reduction by use of tethers, 54; scavenging, 147; solid, 207; tritium, 80 Fuel cell, 148, 246, 602, 668; high energy output, 127; hydrogen/oxygen regenerative, 593; lunar base power cart, 148, 149; lunar base power system, 669, 670; nighttime power for lunar base, 148; operating temperature range, 127; OTV power system, 39; power storage, 403; product water, 127, 432; reactants, 127, 404, 432, 595, 668; regenerative, 246, 595, 596; space shuttle, 127; use with solar arrays, 596; ECLSS power source, 126; lander power, 127; lunar rover, 70; operation, 246; primary, 595, 596; reverse osmosis, 245 Fuel production, lunar, 448 Fuel storage, space, 20, 25 Funding, 0 Fusion, conductivity changes in FeO, 414, 459 G Ga, see Gallium G, stellar spectral type, 637 Gabbro, anorthositic, 368; layered intrusive complex, 379; lunar, 362; olivine content, 365 Galaxy, colonization, 637, 644; spread of human life, 637 Gallium, component of lunar pyroclastic coating, 431; use in photovoltaic cells, 246, 594 Gas, abundances in lunar regolith, 395, 610; anaerobic digestion production, 521; atmospheric components, 508; biomass generation system, 245, 246; bubbles in mass-transfer system, 648; carrier of liquid for mass transfer, 647, 650; chromatography, 437, 517, 554; collection during in situ mining, 611; content of beneficiated
regolith, 610, 611; control and monitoring systems, 541; controller, 509; cryogenic separation, 521; convection, 648; effect on thermal conductivity of regolith, 395; effects on lunar concrete mixtures, 487; effluent stream, 553; exchange by simple plants, 296, 297; exchange in CELSS, 388; extraction from regolith, 394, 395, 478, 614; flow rate in mass-transfer system, 648-650; fluidized-bed reactor, 614, 615; heat-transfer agent, 395; high-pressure storage system, 596; loss from concrete, 499; loss from lunar base, 509; lunar abundance, 434; lunar base pressurization, 508, 509, 547; management for regenerative fuel cells, 595; mixtures in CELSS, 388; natural, 459, 468, 470, 513; noble, 440; partial exchange in lunar base, 519; phase separation in ECLS, 505; processing facility, 615, 616; relationship to plasma, 559; removal by zeolites, 388; removal from regolith at low pressure, 395; removal of methanogens, 532; separation by zeolites, 388; separation from liquid, 553, 648; separation in CELSS, 388; silicon tetrafluoride, 423, 426; solar wind, 477, 478, 480; storage, 482, 596, 615; stream from oxygen plasma conversion, 561; sulfur, 429; sulfur dioxide, 431, 433; sulfur species evolved from pyrolized regolith, 610; trace contaminants in Biosphere II, 514; turbulent convection, 648; velocity in spray tower, 650; working fluid for turbine, 395 Geikeilite, 366 Genesis Rock, 704 GEO, see Geosynchronous orbit Geochemistry, lunar, 366 Geodesy, radar altimeter, 176 Geophysical station, 172, 173 Geoscience, exploration, 170; lunar, 163, 164, 174, 183, 185, 186, 211, 217; lunar orbiter, 176, 209, 210; Lunar Observer, 199 Geosynchronous orbit, 27, 62, 170, 394, 401; cost of material delivery from Earth, 447; radiation shielding requirement, 239; solar-power satellite, 447, 448, 450; space transportation node, 401; transportation cost from Earth, 450; transportation cost from lunar surface, 450 Girbotol, carbon dioxide removal process, 521 Glass, agglutinate, 190, 361, 372, 385, 519; alteration to special-purpose minerals, 387, 389; atmospheric contamination during production, 184; basaltic, 387; black, 195; brick fabrication, 72; building material, 240; component of breecia matrices, 362; composite material, 398; droplet, 195; erosion by ejecta, 142, 144, 145; fiber optics, 301; formation by meteoroid impact, 519; fusion of lunar regolith, 71; lunar construction material, 389; lunar jewelry, 402; lunar processing, 402; lunar transparent, 421; optical quality, 142; orange, 195, 429; production from regolith, 184, 398, 432; pyroclastic, 429; regolith component, 385, 387, 483, 487; source material for special-purpose minerals, 387; tunnel lining, 294, 295; volatile coatings, 429 Gold, content of "pristine" rocks, 362; discovery in Alaska, 698; meteoritic element in regolith, 371; mirror coating, 639, 642 Grain, role in early Australian economy, 698, 699 Grain size, beneficiation of regolith, 476, 477, 610, 613; correlation with helium content, 610; distribution in lunar regolith, 330, 372, 609; landing surface, 140; effect on mechanical properties of soil, 487; evolution of regolith, 171; median on Surveyor 3 filter, 331; related to gas content of regolith, 437, 438, 441, 444; relationship to solar wind implantation, 190 Gravity, 659; 1/6, influence on structural design, 282; 1/6, testing of prefabricated modules, 266; anomaly, 158, 168; architectural factor, 239, 268; artificial, 92, 175, 282, 574, 661, 677-679; cardiovascular effects, 661; dependance of water processing systems, 551, 553; dependence of water quality instruments, 554; driver of buoyancy, 649; effects of wastewater use in plant system, lunar, 554; effects in diffusion processes, 647; effects on base design, 282, 505; effects on bone loss, 569, 571, 661; effects on crystal settling rates, 379, 380; effects on ECLS design, 505; effects on electrolysis, 412; effects on flame structure, 657; effects on human gait, 241; effects on human skeleton, 569, 572-574; effects on liquid-gas mixing, 649; effects on liquid-phase turbulence, 649; effects on ore processing, 409; effects on pneumatic structures, 251; effects on skeletal muscles, 661; effects on soil drainage, 533; effects on turbulence, 649; effects on bone-mineral content, 572; high, 650, 654; human adaptation, lunar, 569, 571, 574; lunar, 282, 261, 353, 355, 411, 499 553, 569, 574, 608, 614, 622, 627, 633, 639, 648, 661, 667, 668, 670; martian, 573, 574, 647, 648; nonzero, 654; optimal environment, 569; orbital measurements, 173; Phobos, 662; physiological effects, 282, 570; reduced, 282, 573, 574, 606, 647-650, 653-657, 659, 661, 662, 668; search for lava tubes, 228; survey, 168, 173, 228; terrestrial, 69, 353, 622, 653, 654-657, 659, 662, 670; variable on space station, 661; zero, 83, 84, 96, 99, 102, 284, 353, 505, 537, 569, 570, 574, 679; zero, distribution of body fluids, 566 Gravity field, lunar, 204, 219 Gravity gradient, 90; effects on heat pipes, 601; forces, 87, 90; lunar, 205; problems, 574; stabilization, 37, 201; torque, 642 Gravity-assisted trajectories, 458 Greenhouse, Biosphere II, 516; effect, 459; lunar base, 670; module, 522 Gruithuisen Crater, objective of robotic traverse, 402 Guidance, 20; adaptive, 32-34; automated systems, 146; lander, 126, 136, 140, 146; lander radar, 144; space station, 25, 28; tether system, 57, 58 H H, see Hydrogen H₂, see Hydrogen Habitat, 18, 72; atmospheric requirements, 508; biosphere, 293, 296; capacity, 669; components, 249; configurations, 255; continuously manned, 506; design, 176, 177, 250, 251, 282, 296, 297, 669; dimensions, 184; ECLS support, 506, 507; energy storage, 72; inflatable, 249-253; lava tube, 219, 225, 228, 287, 289; life-support system, 72; lighting, 297, 302; lunar, 293, 579, 593; module, 3, 18, 23, 26, 27, 134, 136, 179, 250, 255, 283, 289, 302, 400, 493, 507, 580, 597, 604, 668, 669, 678; prefabricated, 261; pressurization, 508; radiation shielding, 251, 252; regions of Biosphere II, 514; required facilities, 580; subsurface, 293, 408; thermal protection, 589, 590; volume requirement, 287, 675; venting, 183-185, 349; waste material processing, 506 Habitation, area requirement, 296; artificial gravity, 677, 679; growth, 151; lunar base, 143, 145, 151, 181, 249, 253, 281, 283, 285, 290, 293, 499, 513, 519, 633; Mars lander module, 679; planetary module, 679; polar site, 175, 302; space, 249; suitability of Mars, 393 Halo orbit, 102 Hazard, acceptable, 98; analysis, 95, 97, 98, 100; biological, 99, 100; block field, 185; catastrophic, 99; combustible, 99; control, 97, 98, 100; cryogenic, 99, 100; electrical, 99; explanation, 100; EVA, 95, 134; fire, 655, 657; hydrogen, 98, 99; identification, 95, 98, 100; impact, 99, 100, 231, 660; landling, 145; long-term, 99; lunar dust, 622; martian thermal, 60; mercury in fluorescent lamps, 301; mission, 99; operational, 100; OTV depot, 99; pollution, 99; pump cavitation, 99; radiation, 251, 475; safety, 95, 97-99; seismic, 231 He, see Helium Heat capacity, lunar regolith, 395, 477, 478, 613 Heat flow, Apollo 17 experiment, 168; global mean, lunar, 168; lateral variation, 173; mare/highland border, 168; measurement, 168, 172, 173; probe, 172, 173; relationship to megaregolith thickness, 168, 173. Heavy lift launch vehicle, 5-9, 12, 13, 15, 17, 179, 180, 188, 593, 667. Helium, abundance in Mare Tranquillitatis, 194; abundance in regolith, 184, 187, 189, 190, 194, 393, 430, 434, 469, 477, 547, 610; abundance related to regolith exposure time, 190; abundance with depth in regolith, 195; adsorption on degassed regolith, 615; concentration in fluidized-bed reactor, 614; concentration in gas evolved from regolith, 615; content of dark mantle, 195; correlation of abundance with titanium oxide abundance, 469; correlation with ilmenite content of regolith, 441, 611; correlation with regolith size-fraction, 189, 194, 195, 610, 611; correlation with titanium content, 187, 189, 190, 193, 469, 609; cosmic, 317; depth profile in regolith grains, 610; diffusion in regolith, 615; distribution in Apollo 11 regolith, 194; extraction from regolith, 469, 470, 473, 477, 549, 610, 612, 615; fraction of gases trapped in regolith, 184; ionization detector, 437; isotopic separation, 616; lique- faction, 615; liquid reservoir, 616; loss in sieving process, 610; lunar atmospheric gas, 338, 339; lunar resource, 361; lunar thermal escape time, 339; mining, 184, 189, 194, 341, 347, 394, 395, 609; partial substitute for nitrogen in habitat atmosphere, 548, 550; possible effect on lunar cement, 487; recovery rate from regolith, 189, 194; separation after extraction from regolith, 470; separation of isotopes, 615, 616; solar wind component, 183, 190, 194, 337, 339, 361, 374, 469, 477; solar wind implantation rate, 173; strategic storage caverns, 468; transport from Moon, 615, 616 Helium 3, 75, 76, 78-81, 184, 194; abundance in gas-giant planets, 80, 81; abundance in regolith relative to helium-4, 189, 477, 610, 616; byproducts of production, 472, 475, 547-549, 609, 616; acquisition, 475, 477-482; acquisition by-products, 481, 482; commercial value, 479; cost, 466, 470, 472, 473, 477, 549; decay product of tritium, 460, 468; depletion near lunar base, 478; energy equivalent, 460, 469, 470, 472, 477, 609; enrichment process, 616; extraction facility, 482; fraction of total helium abundance, 477; fuel cycle, 482; fusion fuel, 75, 187, 195, 361, 373, 374, 394, 459, 460, 475, 477, 481, 482, 547, 549, 550, 609, 667; fusion reactor, 609, 610; fusion rocket, 76, 79; ilmenite source, 170; ion, 460, 469; low terrestrial abundance, 460; lunar abundance, 75, 460, 469, 477, 482, 609; lunar export, 170, 481; lunar-derived, 189, 469, 475, 477, 547; lunar resource, 184; mining, 80, 170, 174, 183-187, 471, 475, 477-482, 547, 612, 613, 616; nonterrestrial sources, 468; potential lunar reserves, 477; predicted demand, 472; production, 184, 478-480; properties at 2.2 K, 616; propulsion system, 75, 76, 80, 81; quantity required for terrestrial energy
needs, 460; reactor radioactivity, 466; recoverable quantities, 194; regolith beneficiation, 477; regolith processing, 611, 613; solar wind as source, 460, 469, 609; terrestrial abundance, 79, 460, 468, 469, 475, 477, 482, 609; terrestrial production rate, 468, 469; terrestrial resource, 609; terrestrial sources, 468, 469; terrestrial value, 482; total energy potential, 75 Henry's Law, 412 Hg, see Mercury Highlands, 167, 172, 185; active seismic sounding, 173; aluminum abundance, 170; Apollo missions, 362; component in breccias, 362; compositions, 362; crater density distributions, 155; crustal rock, 187; crustal thickness determination, 173; description, 185; effects of impact bombardment, 167; europium anomaly, 366; feldspar abundance, 184; feldspar compositions, 365; Grimaldi area, 157; helium abundance, 189, 469; hydrogen abundance, 443; igneous rocks, 363; ilmenite abundance, 441; iron abundance, 156; lateral variations, 171; magnesium abundance, 365; megaregolith, 168; meteoritic material, 371; mineralogy, 362; metal component, 371; Oceanus Procellarum region, 157, 160; olivine abundance, 365; plains materials, 172; plutonic rocks, 362; polymict breccias, 362; pyroxene, 365; regolith, 170, 187, 189, 273; relationship to magma-ocean theory, 366, 379; roughness, 185; source of anorthite, 408; sulfur abundance, 429; topography, 176, 185; troctolites, 368; young thrust-fault scarps, 232 HLIV, see Heavy lift launch vehicle HLV, see Heavy lift launch vehicle Horticulture, Biosphere II, 516 Hubble parameter, constraint provided by lunar observatories, 319; definition, 315; measurement, 316 Hubble Space Telescope, 315, 319 Human behavior, effects of life in confined space, 673; influence on lunar base design, 237, 282 Human expansion, 75, 237, 637 Human exploration, 88, 385 Human factors, 237, 659; engineering, 97, 237; hazard, 98-100 Humidity, control by artificial intelligence, 522; control in lander cabin, 126; control system, 581, 582; effect on photosynthesis, 296; exchanger, 581, 582; factor in plant productivity, 544; reclamation of condensate, 504, 506, 554; regimes in Biosphere II, 514; water reclamation from condensate, 554 Hydrogen, 64, 470, 528, 560; abundance in core samples, 443, 444; abundance in regolith, 184, 393-395, 407, 430, 433, 434, 437, 438, 443, 444, 487, 520, 610, 615; abundance related to soil grain size, 437, 438; abundance related to soil maturity, 437, 438, 443, 444; adsorption on degassed regolith, 615; alpha spectral line, 316; arcjet propellant, 37, 39, 40-42; autotrophic bacteria, 547; battery component, 28, 29, 180; boil-off rate, 39, 40; by-product of helium-3 mining, 394, 471, 472, 475, 481, 616; component of lunar atmosphere, 183; component of water evolved from regolith, 610; concentration in breccia, 438, 440; cosmic, 317; diffusion in regolith, 615; distribution related to soil-particle type, 440; distribution with depth in regolith, 444; Earth-derived, 55, 63, 447, 476, 493; enrichment in agglutinate fraction, 440; extraction from regolith, 394, 395, 408, 411, 437, 438, 470, 610, 614, 615; flow through CELSS, 525; fuel cell reactant, 127, 246, 404, 432, 593, 595, 668; ilmenite reduction, 64, 407, 423, 475, 476, 521, 522, 549, 562, ionization in biological system, 433; laminar diffusion flames, 655; lunar abundance, 393-395, 437; lunar atmospheric component, 329; lunar-derived, 146, 393, 394, 447, 450, 457, 470, 481, 547; lunar production, 394; lunar resource, 361, 437; lunar thermal escape time, 339; mineral processing reagent, 423; mining, 393, 394, 437, 444; orbital storage, 95, 99; orbital transfer, 63, 102; paucity in lunar interior, 393; plasma, 48; production from methane, 519, 521; production requirements, 394; propellant, 6, 13, 17, 28, 35-42, 44, 45, 47, 48, 56, 57, 62-64, 66, 67, 70, 71, 85, 119, 121, 123-125, 133, 134, 136, 137, 147, 148, 180, 181, 206, 361, 374, 394, 400, 407, 432, 447, 454, 479, 481, 677; properties, 423; reagent element, 398; removal by ECLS, 507; removal from organic compounds, 432; requirement at lunar base, 408, 437, 473; requirement in concrete processing, 273; requirement in water production, 521; retention by ilmenite, 441; separation from other gases, 521, 615, 616; shuttle external tank, 398, 400; silane component, 432; smectite saturation, 389; solar wind implantation rate, 173; solar wind component, 168, 337 339, 361, 367, 369, 372, 374, 387, 408, 411, 421, 437, 438, 441, 444, 609; storage, 119, 124, 137, 615; sulfur life cycle, 433; synthesis from steam-hydrocarbon reforming process, 521; terrestrial, 49, 55, 62, 700; thermalized, 339; timescale of diffusion from regolith grains, 615; transport from Earth to Moon, 504, 678, 679; use in regenerative life-support systems, 177; wastes as source, 521, 522; water equivalent in regolith, 393; water production, 444, 601; water-derived, 432, 562; working gas in fluidized bed reactor, 614; yield after sieving soil, 438 Hydroponics, comparison to zeoponics, 388; candidate cultivation method in Biosphere II, 516; high production, 530; mechanical and control requirements, 533 I, see Iodine Ice, Antarctic, 175, 244, 247; heating in concrete with microwaves, 491; possible existence at lunar poles, 393, 401, 407, 601; relative ease of dispersion in concrete mixture, 490, 491 Iceland, 215-217 Igneous activity, early Moon, 380 Igneous rock, 370 Ilmenite, 159, 170, 366-368, 408, 668; abundances at Apollo sites, 668; association with rutile, 370; association with troilite, 370; beneficiation in regolith, 408, 611; black glass, 195; compositions, 366, 368; correlation with FeO in Apollo 17 soils, 373; distribution in regolith, 611, 670; efficiency of oxygen extraction with hydrogen, 423; exposure to solar wind, 190; exsolution product of ulvospinel, 369; factor in site selection, 408, 669; grain size, 190; helium content, 170, 190, 373, 441, 668; hydrogen content, 441; hydrogenation, 367; lunar abundance, 368; lunar basalt component, 170, 362, 366, 380; regolith component, 373, 385, 408, 432, 611; lunar resource, 159, 170, 379, 380, 382, 407, 408; magnesium content, 366, 370; mining, 521; paucity in highland soil, 443; potential steel feedstock, 268; product of ulvospinel reduction, 369; propellant source, 206, 408; pryroclastic component, 228; reduction, 64, 65, 366, 407-409, 432, 475, 520-522, 549, 562; reduction with methane, 521; remote sensing, 159, 669; settling velocity in magma, 380, 381; solar-cell component, 431; source of oxygen, 155, 170, 184, 368, 379, 424, 429, 432, 519, 668; source of sulfur, 432; source of titanium, 190; stability curve, 366; terrestrial, 159, 366, 367; zirconium content, 370 Imbrian Period, 157 Imbrium region, 189 Impact, asteroidal, 164; autoreduction of regolith, 372; block generation, 213; breccias, 372; brecciation, 167; cometary, 183; damage, 90, 99, 151, 277; debris, 185; excavation, 168; fluidization, 185; gas jet on lunar soil, 158; generation of agglutinates, 440; generation of defects in regolith material, 611; generation of plasma, 168; generation of regolith, 170, 609; hard lander, 178; hazard, 99, 100, 219, 283, 660; highland bombardment, 160, 167; hydrated meteoroid, 183; iron meteorite, 213; melt, 362, 372, 374; metamorphism of lunar soil, 371; meteoroid, 220; micrometeorite damage, 408; micrometeorite damage to regolith grains, 487; micrometeoroid, 84, 220; orbital debris, 97, 99; pneumatic, 99; protection, 85, 88-90, 92, 93; remobilization of sulfur in troilite, 371; reworking of regolith, 170, 171, 372; secondary, 223; shock damage to rock, 362; vaporization of meteoroids, 183 Impact basin, 164, 172, 362 Impact crater, 140, 164-167, 213, 214, 216, 220-222 Impact deposit, 213 Impact ejecta, 161 Industrialization, lunar, 673 Industry, Alaskan salmon, 698; aluminum extraction, 424; Australian pastoral, 699; fusion power, 466, 477; lunar, 181, 432; synthesis of zeolites, 387 Infrastructure, Earth-Moon transportation, 61-65, 67; lunar, 103, 450, 476; lunar base, 103, 253, 266, 267-270, 273, 274, 450, 476, 480, 510; lunar oxygen production, 399; solar-power satellite construction, 397; space, 18, 80, 397, 399, 475, 481; space transportation, 83, 84, 93, 103, 104, 133, 385, 405 Insolation, variation at Mars, 639 Interferometer, Moon-Earth radio, 185 Interferometry, differential, 641 Internal friction, lunar soil, 140 International space law, 691, 692; Outer Space Treaty, 691, 693 International lunar base, 676 Iodine, disinfectant, 553; halogenated organics, 553; lasing medium, 69; recovery methods, 553; resistant bacteria, 553; taste, 553; water disinfection, 553 Ions, acceleration, 48, 437; altitude distribution, 340; ammonium selectivity by zeolites, 388; atmospheric, 337, 344; atmospheric energy distribution, 339, 340; atmospheric fluxes, 339, 347; atmospheric loss to solar wind, 339; atmospheric production rate, 340; atmospheric source, 342; components of silicate melts, 415; barium extraction by polarization electric field, 348; bombardment of lunar surface, 168; chromatography for testing water, 554; cyclotron, 77; detectors in SIDE, 338; deuterium, 460; discharging in electrolysis, 415; deflection by lunar magnetic fields, 173; engine, 48, 54, 61, 65-67; essential species for plants, 520; exchange in water purification, 246, 552, 553, 554; flouride compared to oxide in size, 423; flux after impact of Apollo 13 S-IVB, 343, 348; formation on lunar dayside, 339; generation from photoionization of neutral atmosphere, 339; helium-3, 460, 469; hydration as source of soil acidity, 519; magnetosheath, 343; mass spectrometer in SIDE, 338, 344; migration in electrolysis of silicate melt, 415; modern sensors, 344; orthophosphate, 521; oxide concentration in silicate melt, 412; oxygen, 416; plasma cloud, 348; production in plasma reactor, 560; propulsion, 35-39, 41-44, 56, 76, 642; reflection by magnetic mirror, 78; relationship to conductivity of silicate melt, 415; residence time in atmosphere, 340; role in electrolysis, 414; slowing in hot plasma, 462;
solar wind, 339, 343, 393; suprathermal, 184; temperature in tokamak, 461; terrestrial magnetospheric, 338; toxicity of fluoride, 423; variation of atmospheric number density with altitude, 340 Ion exchange, behavior, 385 Ionization, detector, 437; plasma reactor, 560 Ionizing radiation hazard, 275, 282, 433, 659 Ionosphere, 337, 339, 340; alteration by human activities, 344; coupling to solar wind, 339; Debye shielding length, 348; density, 349; dynamics, 344; interference with terrestrial VLFA, 317; particle collision frequency, 339; plasma frequency, 349; radio wave reflection, 349; source, 337; terrestrial, 339 Iridium, content of "pristine" rocks, 362; meteoritic element in regolith, 371 Iron, abundance in lunar regolith, 156, 361, 374, 476, 520, 549; alloy with silicon, 412, 417, 421; armalcolite component, 370; association with troilite, 370; basalt component, 362; component of highland material, 156; component of plagioclase, 365; ease of reduction, 425; electrolytic production, 412; enrichment in basalt melts, 365; essential plant ion in lunar soil, 520; gamma-ray spectral lines, 190; high silicon, 421; liquid segregation from FeS, 429; lunar coins, 402; lunar processing, 402; lunar resource, 227, 405; lunar-derived, 408; metallic, 361, 362, 370-372, 374, 416; meteorite, 213; olivine component, 206; oxide in terrestrial ilmenite, 159; phosphate sink, 521; pleonaste component, 368; pyroclastic source, 228; pyroxene component, 206, 363, 365, 408; pyroxferroite component, 365; recovery by electrolytic smelting, 411, 415-417; reduction product, 64, 366, 367, 369, 371, 562; schreibersite component, 370; separation in magma ocean, 366; silicate electronic conductivity, 414, 415; solar flare heavy nucleus, 331; solubility of metal in silicate melt, 413; source of soil acidity, 519; storage container for fluorine, 423; terrestrial processing techniques, 405; tobermorite component, 387, 389 Irradiation, laser, 72; sources for photosynthesis, 543, 544, 546; temperature related to material damage, 464; ultraviolet disinfection of water, 553, 554 I_y/FeO, correlation with other indices of surface exposure, 373; correlation with solar wind abundance, 373, 374, 443; correlation with trapped ³⁶Ar, 373; relationship to agglutinate content, 372, 374; relationship to Fe-metal content, 372; soil maturity index, 372, 373, 437, 443, 444 Isolation, consequence of life at lunar base, 703; effects on personality, 703; fissionable uranium isotopes by centrifugation, 356; microbiological, 531, 533; requirement of lunar telescopes, 326, 327 K K, see Potassium K, stellar spectral type, 637 Kepler Crater, objective of robotic traverse, 402 Kr, see Krypton KREEP, abundance in Balmer area, 168, 172; association with basalts in Marginis Basin, 168; availability in Smythii Basin, 170; basalt, 172, 669; basalt component, 171, 172, 365; definition, 168; distribution, 168; domination of trace-element patterns, 362; geological setting, 168; lunar resource, 170; volcanism, 172 Krypton, abundance in regolith, 393; laser, 203 r Laboratories, lunar base, 676 Laboratory module, 476 LACE, 343; evidence for time-variation of lunar ⁴⁰Ar, 339; measurements of lunar neutral gases, 337-339 Lagrange point, 201, 643; laser station, 643; launch region for deep-space missions, 433; Venus, 642 Lander, Mars, 678, 679 Landing facility, lunar base, 140, 142, 151 Landing gear, 34, 47, 62 Landing site, Apollo, 668; Apollo 11, 186; Apollo 15, 158, 172; Apollo 17, 159, 194, 213, 227, 580; autolander, 179; crew lander, 179; development, 143; evaluation, 18; interaction with lander, 140; landing pad, 101, 123, 140, 151; radar transponders, 146; selection, 18, 209, 589 Large Magellanic Cloud, 321, 323 Laser, 69-71, 202, 203; cavity, 69, 639; coherence length, 639; communications, 27, 638; communications link, 637; diode, 212; energy, 69, 203; footprint from orbit, 203; frequency, 202, 203; fusion of lunar surface, 71; gain, 638, 639; gyro, 28; high pulse-repetition rate, 212; induced oscillation, 638; interstellar communications, 638; irradiation, 72; krypton, 203; lasing material, 212; lifetime, 209; LOLA, 212; Mars planetary, 639; mineral fluorescence, 203; natural carbon dioxide, 638; Nd-YAG, 212; optical radiation, 210; orbital altimetry, 209, 210, 212, 214; orbital resonator, 639; orbiting power station, 72; oscillator, 212; output, 203; photovoltaic converter, 69, 70, 72; planetary, 639, 641, 643; planetary design, 639; power output, 69-72; power requirement, 71, 72; power station, 69, 70; power transmission, 69, 70, 72, 73, 401; propulsion, 48, 54, 61, 66, 67, 70, 71, 73; pulse, 203, 210-212; radiation, 210; ranging system, 146, 210; receiver, 212; ring, 639; ring gyro technology, 126; ruby, 209; sensing capability in lunar surface systems, 606; shape of backscattered pulse, 210; solar-pumped, 69, 70; specific brightness, 638; specific power, 638; spectral linewidth, 638; stimulation of Raman emission, 201, 202; sustained oscillation, 639, 641; telemetry, 639, 641; thermal engine, 48; tracking, 212; transmission optics, 70; transmitter, 210; Venus planetary, 639; venusian interstellar transmitter, 639; wavelength, Laser altimeter, 209, 210, 216; airborne, 209-213, 215; Apollo, 209, 211, 212; footprint, 210; lidar, 212; Lunar Observer, 209, 210, 216, 217; shuttle, 212 Laser backscatter waveform digitizer, 212 Launch facility, 133, 134 Launcher, mass driver, 397 Lava, basaltic, 412, 434; basaltic channel, terrestrial, 219; basaltic flows, 164, 219; buried flows in Balmer, 172; channels, 215, 216, 219, 220, 222; dated flows, 164; drainage from lava tube, 219; floor of Grimaldi, 157, 158; flow dynamics, 157; flow front, 212; flow sequence, Icelandic, 215; KREEP association, 168; lateral variations in Mare Smythii, 171; low viscosity, 215, 216; Mare Smythii, 164, 167, 171; pahoehoe, 219; physical characteristics, 219; sulfur-rich, 429; supply rate, 219 Lava flow, 212, 219, 225, 408; composition, 307; Mare Marginis, 171; Oceanus Procellarum, 160; terrestrial, 220 Lava tube, 219-228, 285, 287; application of inflatable structures, 289; base site, 220, 228, 281, 287-289, 408, 430, 433; earthquakes, 220; environmental conditions, 285; global distribution, 287; habitat site, 285, 288- 290, 302; illumination, 302; interior, 285, 287-289; moonquakes, 220; morphology, 287; morphometry, 220; origin, 285; penetration by impact, 220; potential shelters, 219; pressurized, 289; reconfiguration, 288, 289; relationship to simuous rilles, 287; roof thicknesses, 287; shelter for superstructural elements, 285; solidity, 287; suitability for concrete processing, 289; terrestrial, 219, 220, 228, 287; waste disposal site, 228 Law, international, 247, 691-693; Roman, 692; space, 691-694 Law of the Sea Convention, 691 Lead, battery component, 431; removal from water by zeolites, 388; concentration in pyroclastic deposits, 170 Less Developed Countries, interpretation of Moon treaty, 692 Lettuce, 529, 538; composition, 525; part of adequate diet, 530; potential lunar base plant, 525; rapid growth, 297, 546; suitability for lunar biosphere, 297 Li, see Lithium Libration, 163, 169, 170, 174, 176 Libration point, 31, 34, 35, 101, 102, 403, 404, 458 Life science, 476 Life support, 402, 647; advanced system, 557; Apollo portable system, 622; bioregenerative system, 547, 548, 556; electrical energy, 409; infrastructure element, 476; loss of oxygen from system, 549; lunar base capabilities, 518; lunar farm, 525, 529; material replacement, 549, 550; regenerative system, 554; requirements, 393, 395, 407, 472, 522, 525, 537, 549; solar energy, 409; space-based system, 550; space station system, 553; special-purpose minerals, 385, 387; system, 295, 296, 385, 518, 519, 522, 547, 548, 551; use of lunar materials, 385, 480, 547, 549, 550; water recycling system, 556 Life support system, portable, 178 Liquid oxygen (also see Oxygen), Earth-derived, 13-15, 454; fuel cell reactant, 403; lunar export, 135; lunar production, 51, 52, 146, 504, 604; lunar production module, 135, 136; lunar production plant, 14, 49, 102, 135, 402, 404, 453, 454, 506, 508, 509, 685-687; lunar-derived, 13, 14, 47, 49, 62, 63, 101, 103, 104, 107, 136, 206, 448, 450, 453-455, 457, 580; oxidizer, 13, 32, 34, 85, 119, 121, 128, 130, 133, 147, 181, 207, 432, 447, 449, 454, 455, 457, 677; pilot production plant, 14, 402, 508, 679; storage, 147; tank, 85, 87-89 Lithium, alloy with calcium, 427; heat-pipe fluid, 613; reducing agent, 427 Living quarters, 267; inflatable, 177; lava tube, 228; lunar base, 700; radiation protection, 177 LLOX, see Liquid oxygen LM, see Lunar module Logistics, 607; crew, 104; ECLS, 503, 504, 507-510; lunar base, 250, 480, 670, 685; lunar lander, 107; lunar support network, 686; module, 26, 400, 581; orbital depot, 92; space station, 123, 400; structure pressurization, 508 Loss tangent, 611 Low Earth orbit, 3-9, 12, 14, 15, 17, 18, 20, 23, 35, 36, 37, 39, 40-42, 44, 45, 47-49, 51, 52, 55, 56, 62, 64-67, 101, 102, 116, 119, 121, 123, 124, 133; assembly location for Mars vehicle, 680; atmospheric characteristics, 329; atomic oxygen, 301, 329, 332, 334; compared to lunar environment, 229, 334; debris environment, 329, 334, 660; escape velocity, 65; EVA, 603; fabrication of structures, 290; heavy lift vehicle payload capability, 593; industrial facility, 401; lander basing location, 102; maintenance facility, 66, 83; micrometeoroid environment, 330, 332, 334; nodal regression, 37; OTV base, 119; rendezvous, 42; retrieved satellite components, 332; servicing facility, 31, 34; space ferry, 450; space station, 25, 102, 119, 127, 133, 134, 164, 174, 450; space transportation node, 13, 17, 18, 31, 35, 36, 40, 42-44, 47, 52-58, 61-67, 78, 83-85, 101, 102, 116, 119, 120, 127, 128, 293, 133, 134, 136, 199, 200, 394, 399, 401, 402, 404, 405, 411, 448, 453, 456, 457, 593, 677-679, 700; staging facility, 61, 62, 66, 170; staging node, 681; storage location, 20, 55, 56, 61, 64; tether platform, 55, 65, 66, 67; use of
lunar oxygen, 411 Low lunar orbit, 455; lunar lander base, 119; propellant depot, 133, 678, 679; space station, 53, 123, 133, 481; space transportation node, 35, 47, 48, 51, 61, 71, 102, 119, 199, 294, 453, 455-457, 678; transfer and servicing facility, 49 LRV, see Lunar roving vehicle Luna 9, 161 Luna 13, 161 Luna 16, 190 Luna 20, 362 Luna 24, 190 Iuna, lunar samples, 189, 330; missions, 189, 199, 307, 308, 361, 362, 380, 460, 469; program, 75 Lunar Atmospheric Composition Experiment, see LACE Lunar colony, 685 Lunar community, 704; analogs, 704; challenges, 703; psychological support, 703; self-supporting, 697, 700; social support, 703 Lunar day, 169, 178, 593, 600; adapted crop cultivar, 522; duration, 580; heat flux variations at lunar south pole, 589; heat loss at lunar south pole, 591; heat rejection requirements, 582, 586; light pipes for plant illumination, 670; module air temperature control, 591; module heating, 581; negative heat flux, 584, 585, 589; polar lighting survey, 178; relationship to power availability, 421, 470, 478; solar energy supply, 613; surface temperature range, 387; temperature fluctuation, 136, 521, 580; thermal requirements, 149, 582 Lunar lander, 6, 25, 27, 28, 31, 32, 34, 47, 48, 51, 52, 55, 56, 61-65, 101-104, 116, 119-130, 140, 142, 143, 146, 148, 669; aerobrake, 123; Apollo, 116, 143; autonomy, 140; berthing in OTV, 34; cooling system, 149; crew, 124, 126-128, 179, 180; definition, 119; design, 116, 119, 123-125, 128, 151; docking, 126, 146; dust mobilization, 142, 145; Earth-storable, 125; energy storage, 593; engine, 34, 63, 64, 67, 113, 124, 141; expendable, 107, 109; flights, 103; guidance system, 146; life cycle, 125; logistics, 107; maintenance, 34, 52, 54, 123, 125, 128; mass, 52, 116, 119, 121-123, 128; modification of OTV, 62; modification, 137; multipurpose, 119, 125, 128-130; orbital basing, 102, 119, 123; payload, 34, 63, 67, 402; performance, 121; power, 148, 149; production costs, 130; propellant capacity, 130; propellant loading, 123; propellant storage, 119; propulsion, 28, 66, 124; radar, 144; RCS, 125; requirements, 101, 103, 104, 111-117, 124, 125; return to LEO, 123; reusable, 101, 102, 104-111, 119, 151; stage requirement, 101, 109, 116; stage, 101, 103, 111; surface stay time, 127; tether launch, 65; thrust chamber, 124 Lunar module, 119, 120, 133, 135, 136, 140, 143, 172, 180, 343, 620, 622; Apollo 17 impact, 185; ascent correlated with magnetosheath ion fluxes, 343; ascent stage, 120; base for Apollo EVA, 620, 622, 628; capacity, 184; components, 137; costs, 131; crew, 137; descent stage, 180, 333; design, 133, 134; dimensions, 134, 135; engine blast, 135; engine, 123, 124, 141; engineering, 131; factors in LRV deployment, 630, 631; flight frequency, 135; fueling, 137; landing, 135, 136; launch preparation, 137; loading operations, 136; LRV stowage, 621, 622, 627, 630; maintenance, 137; payload, 133, 120; power requirement, 127; propellant capacity, 134; rocket exhaust acceleration of lunar dust, 331, 332; safing, 137; servicing, 133; storage, 137; stowage of auxiliary LRV equipment, 631; surface transportation, 136, 137; transportation requirements, 135; unloading, 136 Lunar month, 123; polar lighting survey, 178 Lunar night, base power source, 148; cryogenic gas separation, 521, 615; Earthlight, 302; fuel cell reactant mass requirement, 595; influence on base power system, 29; laser altimeter operations, 212; lighting requirement for photosynthesis, 433, 670; neutral gas measurement by LACE, 338; module heat loss, 589, 591; power sources for VLFA, 326; surface operations, 136; temperature, 580; use of waste heat, 421 Lunar orbit, abort option, 125; communication satellite, 311, 327; fuel depot, 102; gamma-ray spectrometry, 156; inclination, 123; insertion maneuver, 119, 454; lunar laser altimeter, 210, 212; photography, 140; power satellite, 69, 72; propellant transfer, 123; remote sensing, 307, 312; rendezvous, 37, 42, 180; space station, 53, 123, 133, 481; space transportation infrastructure, 18; space transportation node, 6, 31, 34, 35, 36, 41, 47-49, 51, 61, 71, 101, 102, 104, 116, 119, 121, 123, 199, 294, 355, 448, 453, 455, 456, 457, 678; tether platform, 48; vehicle servicing facility, 32, 34, 49, 102, 104, 123, 209 Lunar Orbiter, data, 176; missions, 199; photography, 176, 178, 209, 210, 220, 221 Lunar Orbiter 3, 213 Lunar Orbiter 4, 176 Lunar roving vehicle, 178, 309, 311, 333, 619; advantages for lunar-surface operations, 620; antennas, 622; approval for development, 619; attitude indicator, 627; batteries, 622, 628, 629; crew station subsystem, 626, 627; deployment, 622-624, 630, 631; design, 619, 620, 622, 631; driving in reverse, 627; dust hazard, 622, 629; emergency driving mode, 624; evolution, 619; first use, 620; history, 619; instinuation into Apollo planning, 619; lighting requirements, 620; navigation system, 622, 627, 628; payload capacity, 620; potential for future use, 619, 631; speed indicator, 628; stability, 620; steering subsystem, 625; stowage in LM, 621, 627, 629, 630; testimonial, 632; thermal control system, 620, 629; turning radius, 625 Lunar surface transportation, 137, 143, 145, 245, 319, 325, 606-608; cargo, 634; constraints, 633; habitat modules, 134; infrastructure, 476; node, 102; power, 149; prefabricated modules, 261; regolith mining, 604; requirements, 604; surface preparation requirements, 478; vehicle, 143, 151, 604 Lunar surface transportation system, 133, 136, 334 M Machine, boring, 409; compression testing, 484; continuous mining, 409; flexure testing, 485; tether repair, 58; tools, 397 Magma, basaltic, 219; chamber, 380; composition, 171, 366; crystallization, 379, 380; density, 381; electrolysis, 476, 519; global system, 168; injection below crater floors, 167; ocean, 167, 366, 379, 380; olivine flotation, 381; oxygen fugacity, 371; Stillwater Complex, 380, 381 Magnesium, armalcolite component, 370; availability in lunar soil, 520; basalt component, 362; basanite component, 380; distribution between ilmenite and silicates, 366; essential plant ion in lunar soil, 520; ilmenite component, 366, 370; metal, 424; olivine component, 206, 365; propellant, 433; pyroxene component, 206, 363, 365; reduction, 427; separation in magma ocean, 366; spinel component, 368 Magnet, costs in fusion reactor, 466; shielding in fusion reactor, 75, 77, 462, 466 Magnetic anomaly, intense, 173; Mare Marginis swirl field, 168, 171, 173; Reiner Gamma, 158; sources, 168 Magnetic field, fusion reactor, 461; gradient, 78; lunar, 173, 251, 660; martian, 660; pressure, 77; role in propulsion systems, 75; solar wind deflection, 173; surface measurements, 173 Magnetometer, 172, 173 Manganese, 408; ilmenite component, 366; olivine component, 365; source of soil acidity, 519 Manned lunar base, 17, 18, 47, 64, 83, 133, 155, 475, 503; development, 3; lava tube site, 219, 228; deployment option, 595; photovoltaic power system, 596; precursor missions, 199; site selection, 155; waste products, 228 Mantle, 167, 168, 174, 380; basalt source region, 171; boundary with crust, 173; composition of pyroclastics, 167; lunar xenoliths, 379, 380, 382; mascon source, 168; seismic velocity profile, 173; structure and thermal state, 173; terrestrial, 244 Manufacturing, 481; base for silicon solar cells, 595; cement, 483; cost, 411, 457; life-support requirements, 409; lunar, 65, 70, 283, 289, 397, 403, 472, 476, 480, 496, 647; lunar steel, 268; martian, 647; mass-delivery requirements, 479; module plant, 493, 494; orbital solar power plants, 450; repeatability, 97; requirements, 96, 100, 476, 477, 480, 481; space, 397, 399, 403, 405, 408, 657; system safety, 100; use of lunar regolith, 476 Map, albedo of Reiner Gamma, 158; color-difference of lunar nearside, 191, 193; crater density, 155; polar temperature, 178; titanium variation, 190; western Oceanus Procellarum, 160 Mare, Apollo sites, 171; basin margins and moonquakes, 232; craters, 213; dark, 362; effects on heat flow, 172; evolution, 160; Fe-FeS liquid segregation in magma, 429; helium abundance in regolith, 190, 477; helium-3 abundance with depth in regolith, 477; homogeneity of regolith, 477; ilmenite abundance, 429, 432; landforms, 212; landing sites, 362; lava, 155, 158, 164, 185; magma chambers, 380; materials, 157, 225, 227; mining sites, 189; plagioclase, 365; regolith, 171, 174, 187, 189, 190, 194, 195, 273, 469, 609, 613; relationship to dark-mantle deposits, 195; relationship to floor-fractured craters, 167; rilles, 219, 228; roughness, 185, 216; seismic velocity, 173; subsurface layering, 171; suitability for base site, 155; sulfur abundance, 429, 434, 443; surface boulder hazard, 185; terra boundaries, 168; thickness, 168; titanium content, 193; topogenebu, 212 Mare basalt, 156, 159, 163, 164, 170, 185, 222, 225, 308, 362-366, 368, 370, 371, 380, 393, 411, 609; affinity to pyroclastics, 170, 171; Apollo 17, 194, 227; compositions, 164, 189, 412; fill of Neper Crater, 171; fill of Purkyne U Crater, 171; flows, 173; KREEPy, 171; related to mascons, 168; Tsiolkovsky Crater, 186, 187; thickness, 168; Mare basins, 380 Mare Humorum, lava tubes, 227 Mare Imbrium, lava tubes, 227, 619 Mare Marginis, lava flows, 168, 171; swirl belt, 171, 173 Mare Serenitatis, dark mantle, 195; lava tubes, 222, 227 Mare Smythii, base site, 173, 174; astronomical observatory site, 170; basalts, 164, 170, 171; crater density, 164; heat flow, 168; ilmenite abundance, 170; pyroclastics, 170; radioactivity, 168; region, 168; regolith abundance, 170; soil chemistry, 170; topography, 170 Mare Tranquillitatis, helium-3 194; lava tubes, 222; regolith, 193; titanium content, 189-191 Maria, 156-158, 160, 164, 168, 189, 194; age and origin, 185; assumed uniformity, 193; asymmetry, 155; global distribution, 155; incomplete sampling, 190, 193, 195 Mars, aerocapture, 677; artificial satellite, 662; ascent stage, 678; atmosphere, 638, 660; base, 453, 475, 547, 550, 569, 571, 574, 667, 679, 681. 701; commercial utilization,
47; comparison to Antarctica, 243; difficulty of resupply, 660; effects of lunar liquid oxygen on missions, 457; environmental conditions, 244, 569, 573; exploration, 677, 678; gravitational environment, 571, 573, 574, 648, 650, 656, 657; habitat, 184, 393; human colony, 677; importer of lunar volatiles, 550; lack of magnetic field, 660, 661; lander, 455, 678-680; low orbit, 678; manned base, 453; manned missions, 83, 95, 96, 243, 244, 453, 457, 458, 677-681; mass-transfer system, 647, 649, 650; mesosphere, 638; micrometeoroid hazard, 660; mission, 29, 33, 62, 75, 78, 79, 84, 85, 453, 454, 456, 572, 574, 619, 660, 662; mission payload mass, 680; mission support, 83, 88, 90. 93, 687; mission vehicle, 678, 680; Moon as proving ground, 67 679, 681; multiple landings, 678; oblateness, 639; opposition, 453, 456; orbital eccentricity, 639; orbital laser, 639; oxygen production, 681; perihelion, 453; rotation period, 661; satellites, 411; size of manned vehicle, 660; space transportation, 453; stay time, 453, 455; temperatures. 660; use of lunar liquid oxygen, 453; vehicle, 84, 85, 88, 90, 454, 677, 678, 686; working environment, 661-663 Mars Observer, 210 Mascon, basin, 168, 173 Mass catcher, 397; libration point (L2), 403 Mass driver, 48, 61, 66, 67, 476; construction site, 170, 222; cost effectiveness, 67 Materials processing, 4, 63, 69, 70, 83, 177, 185, 337, 340, 353, 356, 399, 409, 559, 603, 604; space station, 83 Material utilization, lunar, 551 McMurdo Station, Antarctica, 245 Medicine, 476; lunar base mission, 475; relationship to occupational ergonomics, 659; space, 569 Megaregolith, 168, 173 Mercury (element), hazard, 301 Mercury (planet), 667; atmosphere, 217; orbit, 638 Meteorite, component in lunar regolith, 361; generation of impact melts, 370; hydrated, 183; impact, 75, 287; impact-generated seismic shaking, 220; impact mixing of lunar soil, 373, 469; impact protection, 287; impact pulverization of regolith, 609; impact volatilization, 183; iron, 213; shield for optics 300; shock metamorphism, 361, 362, 371, 519; source of lunar erosion, 361 Methane, 407, 432; by-product of helium mining, 475; component of complex organic compounds, 550; energy source, 675; flame, 654, 656; possible regolith volatile, 610; product of anaerobic decomposition, 675; relationship to lunar transient phenomena, 408; removal from atmosphere by biological systems, 517; source of hydrogen, 519, 521; use in illmenite reduction, 521; waste, 432 Mg, see Magnesium Microprobe, 483 Microscope, optical, 487; scanning electron, 483, 487 Microwave, 212; communications, 27; energy input into regolith, 612, 614; extraction of hydrogen from regolith, 407; field attenuation, 611; frequency, 612; generation from electricity, 614; observation of lunar roughness, 211; orbital altimeter, 210; penetration of regolith, 611; potential role in processing lunar materials, 611; radiation coupling with material, 611; radiometer, 211; use in producing plasma, 559 Mineral, beneficiation, 613; breccia components, 362; cation exchange capacity, 389; comminution, 409; composition related to hydrogen content, 437; conditions of formation, 361; crystallization temperature, 361; deposition by crystal settling, 379; deposits, 199; dissolution, 519; excess in tissue due to skeletal bone loss, 569; extraction, 409; extraction and processing, 408; extraction of oxygen with fluorine, 423; flow during mining, 613; fluorination, 423, 426; fragments in agglutinates, 361, 372, 385; hydrothermal concentrations, 379; imbalances in human body due to zero g, 569; lack of chemical weathering on Moon, 519; laser-induced fluorescence, 203; loss from bone, 569, 570, 661; lunar resources, 518; mining, 613; ore, 159, 379; processing, 408, 409, 423, 609, 613; reduction processes, 409; regolith beneficiation, 611; remote sensing, 199; source of plant-growth anions, 387; terrestrial resources, 244, 245 Mining, activities as seismic sources, 172, 185; automated, 409, 604, 609; by-products, 472, 479; candidate methodologies, 409; centralized, 408, 478, 479; considerations, 195; continuous, 409; cost, 289, 411, 471, 550; depth, 194, 470; equipment transportation, 411; equivalence to terrestrial strip mining, 241, 613; hardware delivery, 479; helium, 80, 170, 174, 183-185, 189, 347, 394, 471, 475, 477-482, 547; hydrogen, 393, 437, 444; ilmenite, 170, 521, 522; in situ, 611, 612; incompatibility with observatories, 183, 185, 186, 327, 329; lunar, 18, 72, 184, 283, 289, 319, 349, 407-409, 423, 478, 543; lunar incentives, 470; lunar ore bodies, 408; lunar oxygen, 85; lunar sulfur, 430; mobile, 471, 612, 613, 616; mobile and centralized concepts compared, 478-480; modification of lunar atmosphere, 184, 186, 341, 347, 349, 350; nitrogen; nuclear energy requirement, 409; objectives, 616; open pit, 611, 612; operations, 194, 408, 409, 476, 607, 609; pattern, 194; phosphorus, 521; potential sites, 189, 194, 195, 469, 609, 613; rate of helium-3 recovery, 610; regolith, 170, 408, 547, 549, 604, 607; relevant factors, 189; required amount for helium production, 189; required area, 612; requirements, 194; resources, 163, 643; scars, 434; sieving operations, 395; simplicity of shallow excavation, 434; small bodies, 411; suitable areas, 189, 195; strategies, 611; terrestrial standards, 395; terrestrial systems, 407, 409; underground, 408, 409; waste disposal, 228 Mir, effects of prolonged exposure to microgravity, 353, 668; space station, 237, 353, 569, 570 Mirror, adjustment as array component, 641; diffraction grating, 642; laser transmission, 69; magnetic, 77, 78; reactor, 75, 462 Mission planning, Apollo, 620; lunar surface, 143, 146; Mars, 457 Mn, see Manganese Mobility, aids for working in space, 662; inflatable structures, 289; mobile mining system, 613; module, 607; platform, 607, regolith excavator, 613; SKITTER systems, 634; spacesuit, 662, 663, 668 Module, aerocapture, 678; agricultural, 297, 522; burial, 590, 604, 669; CELSS, 300-303; command, 179, 180, 209, 485; concrete construction, 496; concrete prestressing, 494; concrete structural, 493; construction, 493, 496; crew, 18, 34, 121, 127, 128; electric propulsion, 39; floor area, 493; frame, 494, 496; greenhouse, 522, 556; habitat, 18, 27, 177, 179, 250, 255, 493, 507, 508, 580, 597, 604, 669, 678; heat load, 581, 582, 590, 591; heat generating, 297; interfaces, 669; interior, 26, 496; interior contamination with dust, 669; laboratory, 23, 476, 580, 590; liquid oxygen production, 135; logistics, 26, 400, 581; lunar base, 255-259, 261-264, 266, 293-295, 297, 517; manned, 9, 13, 21, 42; manufacturing plant, 493, 494; Mars lander habitation, 679; mass, 494; mobile miner, 613; navigation, 607; passive thermal control, 589; planetary habitation, 679; power, 668; pressurization, 493; propulsion, 200; regolith shielding, 581, 589; space station, 249, 251, 504, 506, 507, 509; storage, 667, 670; subsurface, 298; support, 400; transport, 667, 670; unshielded, 581, 590 Moon Park, CELSS simulator, 673, 674; description, 673; lunar base demonstrator, 676 Moon Treaty, 691-694; "common heritage of mankind" provision, 691, 692, 693; full title, 691; goals, 694; interpretation of US government, 692; interpretive confusion with Outer Space Treaty, 693; limitation of "common heritage" provision, 693; negotiations, 692; number of ratifications compared to Sea Treaty, 693 Moonquake, effect on lunar base, 231; ground motion, 233; largest recorded, 268; seismic energy, 232; shallow, 173, 231-233 Muscle, atrophy prevention by centrifuge therapy, 355; effects of reduced gravity, 353, 571, 661, 662; relationship of mass loss to loss of strength, 662 N, see Nitrogen Na, see Sodium, Navigation, 20, 25, 28, 125, 140, 144, 146; Apollo LRV system, 620, 622, 624, 627, 628, 630; autonomous, 606; beacon, 146, 178-180; error, 135, 143, 145; inertial, 141; landing, 126, 141; lunar base support, 139; module, 607; remote aids, 143; system, 34, 136, 139, 140, 144; terrainfollowing, 126; visual, 33, 141 Nb, see Niobium Ne, see Neon Neon, abundance in regolith, 184, 393; detection during lunar night, 338; lunar thermal escape constant, 339 Neutral particle, injection into lunar atmosphere, 348 Neutrino, emissions from supernovae, 318; lunar detector, 317; observato- Neutron, 76, 462, 468; damage, 462, 468, 473; exposure testing facility, 468; fusion reaction production, 459-462, 466, 475; fluence, 79, 80; probe monitoring of soil moisture, 520; shielding, 461; wall loading, 462, 466 Neutron star, 318 NH₃, see Ammonia Ni. see Nickel Nickel, 412; basalt component, 216; battery component, 28, 29, 180; content of native Fe metal, 371; heavy metal in lunar soil, 520; kamacite component, 371; lunar-derived, 408; olivine component, 365; schreibersite component, 370; storage container for fluorine, 423, 424; taenite component, 371 Niobium, rutile component, 370 Nitrogen, 560; abundance in regolith, 393, 430, 550; ammonia source, 552; atmosphere supply, 126; bacteria, 547; by-product of helium production, 470, 475, 548; component of spacesuit atmosphere, 660; concentration in anaerobic digestion effluent, 521; correlation of abundance with soil maturity, 437; effects on flames in microgravity, 655; effects on strength of concrete, 487; helium as partial substitute in lunar base atmosphere, 548; fixing microorganisms, 532; flow through CELSS, 525, 528; logistics for ECLS, 504, 508; loss from base, 509; lunar abundance, 394, 395, 429, 433; lunar-derived, 547, 668; mineral processing reagent, 423; mineralization by heterotrophic microorganisms, 520; mining, 394; plant nutrient, 296, 520, 553, 556; pressurization gas, 508, 509, 547, 548, 550; production by anaerobic digestion of biomass, 521; pyrolitic extraction from regolith, 394; reduction by algae, 520; replacement requirement, 548, 549; requirement for habitat atmosphere, 508; requirement for self-sufficient lunar base, 547; solar wind as source, 373, 411, 421, 609; supply to Moon from Earth, 504, 509; use in regenerative
life-support systems, 177; zeolite-column separation, 388 Noble gas, concentrations in breccias, 440; correlation of abundance with agglutinates, 440 Norite, anorthositic, 418; highland component, 362; layered intrusive complex, 379; magnesian, 418; olivine content, 365 Nuclear energy, reactors, 459; helium-3 fuel, 361, 374, 481; laser pumping, 638; power source for lunar base, 389 Nuclear fusion, 79-81; advantages of deuterium-helium-3 over deuteriumtritium reactions, 475; breakeven, 459; comparison between deuterlumtritium and deuterium-helium-3, 466; controlled reaction, 459; conventional cycle, 667; cost of power plants, 473; description of cycle, 460; deuterium-helium-3 fusion cycle, 481; deuterium-helium-3 plants, 466, 472; deuterium-helium-3 plasma, 462; deuterium-helium-3 reaction, 459, 460, 464, 475, 477; deuterium-helium-3 reactor, 460, 463, 466; deuterium-tritium reaction, 459; efficiency of electrical production, 466; energy, 75, 76, 79; energy conversion to electricity, 76; experimentation, 459; fuel, 75; fuel cycle, 75, 81; helium-3 fuel, 184, 187, 189, 277, 349, 373, 394, 475, 482, 547, 549, 550, 609, 667; influence on economic factors, 462; physics, 79; power, 75, 76, 79-81, 459-461, 481, 609; power, development, 75, 79, 80; power, fuel, 81; power plant, 395, 463, 466, 610; power sources in space, 459; products, 75, 609; propulsion, 75-81, 481, quantitative advantage relative to fission, 466; radiation damage to reactor equipment, 464, 465; rarity of terrestrial helium-3, 475, 477, 482; reaction rates for various fuels, 460; reactor, 75, 76, 79, 170, 466-468, 473, 609; safety risk, 463, 482, space applications, 79, 81; stellar reaction, 459; sustainability with terrestrial helium-3, 609; terrestrial, 475; timetable, 472 Nuclear power, 29, 48, 246; electrical source for regolith-heating microwaves, 614; facility, 134; integration with ECLS, 505; reliability, 464; safety issues, 67, 482; SP-100 system, 593, 594; terrestrial, 482; tunneling device, 294; use in Antarctica, 176; use in water reclamation systems, 505; usefulness at lunar polar base, 176 Nuclear propulsion, 54 Nutrition, plant, 541 O, see Oxygen O2, see Oxygen Olivine, 365 One-sixth gravity, 470, 613, 648; centrifuge therapy for deconditioning, 355; effect on compressive strength of mortar, 489; factor in lunar solararray design, 594; KC-135 aircraft simulation, 655; lunar centrifuge, 356; neurovestibular adaptation, 353; physiological effects, 353, 354, 572, Optical astronomy, incompatible lunar operations, 327; lunar, 325 Orbital maneuvering vehicle, 17, 85, 400 Orbital station, variable-gravity facility, 661 Orbital transfer, stage, 31; staging facility, 61 Orbital transfer vehicle, 3, 6-9, 13, 17, 18, 23, 25, 32, 34, 35-43, 47, 48, 51, 52, 55, 56, 61-67, 69, 70, 99, 119, 123, 133, 397, 399-401, 437, 678; aerobrake, 9, 12, 34, 36, 47, 62, 65, 119; arcjet propulsion, 39; automated, 64, 126, 128; avionics, 62; basic lunar-lander vehicle, 61-63, 402; chemical propulsion, 36-42, 65; configuration, 64; depot, 95, 99; design, 37-39, 62; docking, 37, 99; electric propulsion, 37-44; engine, 37, 62, 63, 66, 67, 124, 125; expendable, 6, 9, 11, 12; fleet size, 42-44; fueling, 98; gas source, 99; gravity-gradient stabilization, 37; kinetic energy, 66; laser propulsion, 48, 66, 67; lunar lander ferry, 119, 123, 128; magnetoplasma-dynamic propulsion, 39, 42, 44; maneuvering capability, 36, 57; mass, 6-9, 37-43, 51, 56, 65; mission frequency, 48; modular, 3, 9; momentum, 55, 65; nuclear-electric propulsion, 37, 43, 48; one-stage, 12, 15, 34; one-vs. two-stage, 9; orbital assembly, 18; orbital facility, 63, 66, 95, 399, 400; payload, 39, 43, 44, 56, 64; propellant, 34, 56, 63, 64, 128; propulsion system, 22, 34, 35, 37-39, 62, 63, 124; rendezvous, 36; reusable vs. expendable, 9; reusable, 13, 15, 678; servicing, 37; size, 43, 44; solar-electric propulsion, 37-39, 43; tether propulsion, 48, 55-57, 65, 66; transportation system, 123; two-stage, 6, 12, 15, 44, 119 Orbiter, communications relay, 179; lunar, 401; Lunar Geoscience, 209, 210; lunar polar imaging, 178, 209; space shuttle, 21, 32, 127, 247 Ore, deposit, 199, 308, 379, 382, 615; detection by remote sensing, 380; extraction, 408; ilmenite, 159, 670; lunar grades, 393, 670; lunar helium, 615; lunar mineral deposits, 379; mining, 408; profit implication, 379; sulfur-rich, 429 Organic material, conversion to gaseous products, 559 NASA organizational structure, current, 683, 687, 688; difficulty in developing efficiency, 687; during Apollo, 688; lines of authority, 688; necessity for revision, 683; recommendation, 683, 688; review before adoption, 689; traditional, 683 Outcrop, hazards to geologists, 309 Outer Space Treaty, 693, 694; "province of all mankind" provision, 692-694; absence of "common heritage of mankind" provision, 692; acceptance, 693; character in international law, 693; common ground for US and USSR, 694; full title, 691; international agreement, 691; international confusion, 692; lack of rules for acceptance, 691; objection of US government, 692; quasiconstitutional function, 692; ratification, 693; reaction of factions in US space community, 694; similarity of US and USSR concepts, 691; strengthening, 693; US interpretation, 694 Outpost, automated astronomical, 169, 174; CELSS, 674; communications, 170, 171, 174; crew, 675, 676; lunar, 3, 18, 450, 678, 679; water, 674, Oxygen, aerobic microbial process, 647; anorthosite source, 170, 408; atmospheric supply, 126; atomic, 329, 332, 334, 342; boiloff rate, 39; capture in electrolytic reactions, 421; component of habitat atmosphere, 433; component of spacesuit atmosphere, 660; computer monitoring in Biosphere II, 517; cycle in lunar base, 519; demand by plants, 542; diffusion in burning process, 653, 655; Earth-derived, 411; ECLS recovery, 504-508; effect on flame, 655; electrode catalyst in regenera tive fuel cell, 595; electrolytic production, 411-421, 504, 562; exchange reaction with fluorine, 424, 425; explosion, 95; extraction from lunar materials, 64, 366-368, 379, 394, 412, 423-427, 437, 472, 479, 496, 518, 519; flow through CELSS, 525; fluxes during crop growth, 528; fraction of lunar surface by mass, 393; fuel-cell reactant, 126, 127, 246, 404, 593, 595, 668; fugacity, 361, 362, 366, 371, 412; gamma-ray spectral lines, 190; gaseous, 63, 125; generator in CELSS, 675; handling by ECLS, 507; hazard, 98, 99; human consumption during work, 662; ilmenite as source, 64, 155, 159, 160, 170, 184, 366, 367, 379, 408, 429, 432, 521, 549, 668; imported by base from Earth, 509; ion accelerated by solar wind, 347; losses, 506-508, 549; lunar abundance, 393, 394, 411, 429; lunar atmospheric scale height, 349; lunar export to space station, 670; lunar mining, 423; lunar resource, 155, 206, 361; lunar-derived, 3, 4, 13, 15, 18, 47, 48, 55, 61-64, 66, 67, 85, 121, 124, 184, 199, 207, 361, 379, 394, 399, 402, 404, 411, 447, 450, 453, 481, 521, 549, 580, 668, 670, 677-679, 681, 700; Mars-derived, 681; mass flux during crop life cycle, 525; model lunar atmosphere, 342; monatomic, 301; NaOH source, 432; obtained from cometary nucleus, 342; olivine as source, 427; orbital storage, 95, 99; other bodies as sources, 411, outgassing of molecular, 349, oxidizer, 6, 17, 28, 35-42, 44, 45, 47, 55, 56, 57, 62-65, 85, 102, 123, 124, 133, 134, 136, 137, 148, 180, 206, 207, 400, 407, 411, 432, 433, 479; Phobos-derived, 678, 681; pilot production plant, 47, 472, 679; polar ice source, 411; production, 18, 20, 35, 67, 170, 174, 181, 184, 206, 366, 368, 424, 432, 434, 453, 457, 472, 475, 476, 546, 551, 562, 604, 667, 673, 674, 675, 700; production plant 47, 48, 53, 55, 64, 72, 404, 432, 668, 679, 681; production by plants, 528, 537, 543, 549, 556; production cost, 457; propellant, 66; pyroclastics as source, 228; pyroxene as source, 408, 427; rate of usage, 394; recycling, 551; regolith sources, 374, 387, 407, 421, 432, 434; removal from organic compounds, 432; required for base operations, 408, 508; requirement of life-support system, 549; requirement of wastemanagement processes, 542; separation by zeolites, 385, 388; shuttle external tank as source, 398; solubility in silicate melts, 412; spacesuit atmosphere, 660; storage, 62, 64, 136, 137, 180, 542; supply to plant roots, 538; tank, 127, 128, 207; turbopump, 63; types of reactions with fluorine, 424; ulvospinel reduction product, 368; use in regenerative life-support systems, 177; vaporization of lunar soil, 342; waste conversion in plasma reactor, 560, 561; wastes as source, 521; water as source, 432; working fluid in metal-fueled rocket, 433; yield on Moon from a Ikt nuclear device, 342 Ozone, absorption of solar ultraviolet radiation, 244; stratospheric, 244; water disinfectant, 553 P, see Phosphorus Palladium, use in hydrogen separation, 615, 616 Parking, Apollo LRV, 625 Parking orbit, 101, 119; altitude, 121; elliptical martian, 455; inclination, 123; low Earth, 179 Pathfinder, 18 Payload, HLV requirement, 180 Pb. see Lead Pd, see Palladium Petrology, lunar samples, 361 Phase equilibria, lunar compared to terrestrial, 379 Phobos, 680; low gravity, 662, 663; manned mission, 453, 678, 679; oxygen production, 678, 681; resource potential, 393, 411, 678 Phosphorus, abundance in regolith, 393; KREEP component, 362; mineralization by heterotrophic microorganisms, 520; mining, 521; plant nutrient, 296; possible deficiency in lunar soil for plant growth, 520; production by anaerobic digestion of biomass, 521; requirement for plant growth, 553, 556; use in lunar agriculture, 170; wastes as source, 521 Photovoltaic array, 28, 594, 602; description, 594; efficiency defined, 593; power per unit mass, 594, 595, 597; technology, 594 Photovoltaic power system, 593, 596 Physics, atmosphere containment, 282; deuterium-helium-3 fusion reaction, 460, 462, 464; deuterium-tritium ignition, 468; fluid phenomena in reduced gravity, 655; fusion, 75, 79; materials, 468; plasma, 79, 468, 473; pressure vessel, 283, 285;
protostellar collapse, 316; star formation, 319; supernova, 318 Physiology, human in 1/6-g, 670; potato, 543; relationship to occupational ergonomics, 659 Plagioclase, 167 Planetary exploration, 673, 681, 688 Planetary science, 309, 679 Plant (biological), anaerobically digested biomass as soil conditioner, 520; areal requirements, 534, 546; artificial lighting for growth, 518; biomass in Biosphere II, 514; canopy, 541, 546; capillary support, 539; carbon dioxide production, 549; correlation of yield and pH, 520; cultivation in Biosphere II, 516; edible vegetable, 674, 675; effects of ethylene as hormone, 532; effects of rhizosphere microbes on growth, 532; factors affecting productivity, 543, 544; factors in growth, 537; fertility enhancement with zeolites, 388; food, 531; food source for tilapia, 521; growth, 301, 302, 385, 387-389, 470, 532, 538; growing facilities at lunar base, 547; growth in controlled environment, 543; growth module, 556; growth system, 553; growth tests in Biosphere II Test Module, 516; hydroponic growing system, 519, 520, 674; loss of carbon, 531; microbial community, 531-533; nutrient delivery system, 538, 539, 542; nutrients, 533, 538, 539, 542, 544; oxygen supply to roots, 538; pathogen, 531, 532, 536; photosynthate, 520; protein, 525; production with zeoponics, 388; proper combinations, 296, 297; root exudation as source of soil acidity, 519; roots, 520, 531, 532; simulated regolith as growth medium, 675; soil as root support, 533; spacing, 538, 546; species in CELSS, 544; species origins in Biosphere II, 514; stress, 522; substrates for growth, 389; sugars, 432; thigmomorphogenesis, 535; tissue culture, 516; transpiration of water, 521; use of solar radiation in CELSS, 544; yields in lunar lighting cycles, 518; zeolite substrates, 388 Plant (factory), agricultural, 669, 670; CELSS species list, 534; cement, 494; Chernobyl, 464; fusion power, 395, 461-469, 472, 481, 609-611, 613; fusion power demonstrator, 469; lunar central power, 470, 476, 481; lunar concrete, 268; lunar propellant, 454; mobile nuclear power, 470; pilot lunar oxygen, 14, 47, 472, 679; mobile regolith processing, 434; module manufacturing, 493-495; nuclear power, 48, 176, 464, 465, 614; oxygen production, 47, 48, 53, 64, 72, 402, 404, 432, 453, 506, 508, 509, 549, 674, 675, 679, 681; prestressed material, 494; regolith mining, 670; regolith processing, 395, 611, 613; thermal energy required for sulfur production, 434 Plasma, 35, 36, 76-80; charge imbalance at lunar surface, 340; cloud, 348; collective effects on neutral-gas transport, 341, 343, 348; current, 80; defined, 559; deuterium-helium-3, 460-462; deuterium-tritium, 461, 468; dielectric constant, 348; extralunar origin, 340; generation, 559, 560; hydrogen, 48, 562; interactions with large gas releases, 343; lunar, 337, 339, 344, 349; physics, 468, 473; pressure, 77; magnetized, 348; oxygen conversion unit, 561; reactor, 559-562; shielding, 347-350; temperature, 77-79, 461; terrestrial magnetospheric, 339, 340; thermalized solar wind, 340; waste conversion, 560 Platinum, use in electrolysis, 416, 418; lunar-derived, 408; reactivity with fluorine, 427; use in resistance measurements of silicate melts, 413 Polar base, lunar, 178, 181 Polar orbit, lunar, 102, 103, 178, 179, 200, 205, 209 Polarization, electric field of solar wind, 348; estimate of ilmenite content, 159, 160; infrared observations of interstellar gas clouds, 318; highdensity regolith, 158; silicate melt in electrolytic cell, 414, 415 Population density, 238 Porosity, concrete, 490; regolith, 158, 273, 395, 487; regolith particles, 483 Potassium, 167; abundance in lunar pyroclastic coating, 430; basalt component, 170, 362; feldspar, 365; hydroxide electrolyte, 629; KREEP component, 362; lunar atmospheric component, 338, 339; lunar resource, 227; plant nutrient, 296, 520; potential lunar sources, 669; production by anaerobic digestion of biomass, 521; sites in smectites, 389; source of ⁴⁶Ar, 339; vitamin, 531; zeolite component, 386 Potato, 525, 526, 529, 530, 543, 546; Biosphere II, 516; calorie content, 544; carbohydrate content, 529; composition of edible portion, 525; factors in production, 543; growth curve, 526; information base, 543; Irish, 543; manipulation of growing environment, 543, 544; suitability for CELSS, 525, 543, 544; white, 538 Power lifter, bone mineral content, 571 Power plant, 18, 670; fusion, 395, 461-463, 465, 466, 469, 481, 610, 611, 613; helium-4 working fluid, 470; lunar, 470, 476, 481, 494; mobile nuclear, 470; nuclear, 464 Power requirement, electrolytic cell, 411, 418, 419; lunar lander, 127; lunar oxygen-production plant, 404; space station, 23 Power station, lunar orbiting, 69; orbiting solar laser, 69-71 Power system, Antarctic, 246; ECIS, 505; excavator, 72; fuel cell, 670; laser, 69, 70; lunar base, 126, 148, 181, 505, 593-596; lunar lander, 127, 128; orbital transfer vehicle, 39, 41-43; roving vehicle, 70; solar, 62, 181; space station, 28, 29, 504; tether platform, 57; waste heat production, Power transmission, laser, 69, 70, 73 Private enterprise, interpreted inhibition by Outer Space Treaty, 692, 693; apparent incompatibility with Outer Space Treaty, 692, 693 Private sector economy, early American colony, 697; early Australian colony, 697; first step at lunar base, 700; growth at lunar base, 698, 700 Probe, heat flow, 172; imaging impact, 178; soil moisture, 520 Procellarum region, 189 Processing, biological, 559; biomass, 246, 537, 538; cargo, 136; central gas facility, 615, 616; central lunar facility, 478, 482; central station, 185; chemical, 398, 405; closed loop, 559; composite fabrication, 398; concrete, 289, 497; data, 26, 27, 323, 643; edible crops, 522; fission fuel, 81; food, 245, 547-549; hazardous systems, 20; high-vacuum materials, 341, 347; human waste, 563; humidity condensate, 504, 506; inertial measurement unit, 126; in situ materials, 245; lander data system, 125, 126; microbial, 407; mineral, 408, 409, 609, 613; orbital, 17, 20-23; oxygen, 546; refinement of lunar-derived gases, 478; regolith, 184, 194, 195, 395, 409, 429, 475-477, 521, 604, 609, 611-614; remote-sensing data, 199; resource, 409, 476, 479; signal, 409, 626, 628, 643; solid waste, 505; space shuttle, 32, 603; sulfur, 433, 434; terrestrial iron techniques, 405; vehicle, 83, 91, 93; waste, 506, 507, 552, 559, 561, 563; waste water, 506, 508, 597 Project Apollo, 237 Propellant, 54, 55, 57, 58, 63, 67, 79, 88, 89, 92, 116, 119-125, 133, 136, 205, 206; argon, 66; boiloff, 39, 40, 453; contamination, 84; cryogenic. 85, 120, 180; density, 120, 124, 130; Earth-storable, 124; fraction of rocket mass, 449; fusion propulsion, 79; handling, 62, 89; hazard, 84-87, 89, 90, 95, 99; hydrazine, 85; hydrogen, 47, 55, 64, 66, 71, 181, 206, 394, 402, 432, 455, 481; hypergolic, 180; leakage, 99; loading, 91, 119, 123, 130; lunar lander capacity, 121, 130, 134; lunar lander combinations, 124; lunar lander mass, 56; lunar mission requirements, 101, 113; lunar plant, 453, 454; lunar production, 206, 356 408, 447, 448, 457; lunar sources, 206; lunar-derived, 65-67, 206, 308, 341, 402, 453, 454, 475, 481, 549, 700; magnetoplasmadynamic thruster, 40; orbital storage. 18, 31, 32, 83, 85, 92, 93, 95, 96, 102, 133, 448, 450, 678, 679, orbital transfer vehicle, 6, 9, 35, 36, 39-44, 56, 62, 64; Phobos-derived, 678; protection from impact, 84; pumping, 93; RCS, 37, 125; requirement for orbit maintenance, 204, 205; rescue mission requirement, 85; robotic handling, 84; savings by aerocapture, 677; savings by landing beacons, 668; savings by tether system, 57; scavenging, 400; spillage, 93; storage, 20, 25, 45, 47, 62, 84, 85, 88, 95, 100, 120, 125, 133, 136; sulfur, 228; supercritical, 39; tank, 6, 9, 18, 33, 34, 39, 84-89, 91, 93, 111-116, 125, 127, 128, 134, 136, 137, 147, 180, 296; tether platform, 58; thermal protection, 84; transfer, 34, 62, 63, 84, 95, 123, 147, 148, 678; unburned, 180; unloading system, 133, 136; unprocessed regolith, 407; zero-gravity transfer, 102; xenon, 39, 40, 48, 642 Propulsion, advanced technology, 47, 61, 66, 124; Apollo systems, 124; arcjet, 39, 44; chemical, 35-37, 41, 42, 44, 47, 54, 65, 78; electric, 35-39, 42, 44, 45, 56, 401; failure during lunar descent, 180; high specific impulse, 35, 65, 66; hydrogen based, 444; ion, 35-39, 44, 48, 66, 67; ion electric, 37; laser, 48, 54, 61, 66, 67, 69, 70, 71, 73; lunar lander, 34, 124; lunar lander requirements, 111; magnetoplasmadynamic, 35, 36, 39, 44; module, 200; N₂O₄/MMH system, 125; nuclear, 54; nuclear electric, 37; nuclear fusion, 75-81; OTV, 34, 22, 37; oxygen/hydrogen, 35, 133; pressure-fed system, 124; pump-fed systems, 124; requirement for L1 platform, 102; reusable system, 20; RL-10 system, 113; xenon-ion, 642 Propulsion system, 124, 179, 180, 199-201, 681; chemical, 447, 448, 677; fusion, 75, 76, 78, 79; libration point platform, 102; lunar ascent vehicle, 113; lunar lander, 28, 111, 113, 116, 124, 125; Mars transfer vehicle, 455; mass-driver packet, 48; OTV, 22, 37-40, 56, 67; pump-fed, 124; tether, 55 Prospecting, lunar, 401, 408; roving vehicle, 73; volatiles, 176 Prospector, lunar orbital, 199 Proton, 80, 240; launch vehicle, 400; release in biological target, 433 "Province of all mankind" provision, concept in international space law, 691; interpretation of less-developed countries, 692; interpretation of US government, 692, 694; interpretation of USSR government, 692; objection of US government, 692; political meaning, 692, 693; provision of Outer Space Treaty, 692-694; support by US and USSR space programs, 693 Pt, see Platinum Pyroclastic, material, 167, 171, 225-228, 431, 434; lunar glass, 167, 170, 190, 195, 429; lunar particles and volatiles, 431, 432, 434; metal sulfides in soils, 429; role of sulfur in eruptions, 429; vapor-transported elements, 430 Pyroclastic debris, use in constructing bricks, 228 Pyroxferroite, 365 Quarantine, 241 Radar altimeter, 141, 176, 209, 210; Apollo 17, 209; backscatter, 204;
bistatic, 209; broad-beam system, 210; Earth-based, 209, 211, 217; energy, 203; lunar lander, 144; lunar-surface based, 126, 228; navigation transponder, 140, 146; pulse, 204, 210; reflectance of dark-mantle material, 195; reflection, 203; signal propagation, 203; sounding, 203, 204; subsurface mapper, 201, 203; support of Apollo landings, 141; survey, 189, 195; synthetic aperture, 204; terrain-following, 126; transmitter antenna, 210 Radiation, 90; background, 251; base-generated impediment to astronomy, 325; bremsstrahlung, 316; cascading in regolith, 330; concrete shield, 499; cosmic, 329, 333; damage, solar cell, 39; damage, tether, 58; damage and sulphyldryl prophylaxis, 433; darkening of equipment surfaces, 333; degradation, solar array, 39; effects on power-plant reliability, 464; effects on Surveyor 3, 331, 333; electromagnetic, 253; electromagnetic generation of plasma, 559, 560; erosion of habitat integrity, 251; filter, 300, 302; fission reactor containment, 466; galactic, 251, 252, 261, 266, 329; habitat protection, 250, 251, 275, 293; hazard, 70, 72, 136, 171, 251, 275, 294, 296, 603, 606, 659; heat dissipation mechanism, 615, 629; ionizing, 275, 433, 659; impediments to astronomy, 334; laser, 210; lava tube roof as shielding, 220, 228, 287; low Earth orbit environment, 332; lunar environment, 251, 282, 325; magnetic field shield, 173; magnetic resonance imaging, 661; material sensitivity, 99, 251, 253; microwave, 611; nonionizing, 659; photosynthetically active, 539, 544; pressure, 90; process in combustion, 654-656; propulsion system reactor, 37-39; protection, 89, 90, 134, 261; reactor damage, 461, 462, 464-466; regolith shielding, 170, 247, 268, 302, 385, 408, 433, 522, 580, 604; relative immunity of robotic field geologist, 309; resistance of lunar concrete, 389; sensitivity of crops, 670; shielding, 48, 92, 93, 240, 252, 253, 255, 259, 261, 266, 274, 275, 279, 281, 282, 285, 288, 663; shielding requirement at geosynchronous altitude, 239; solar, 99, 297; solar effects on astronomical equipment, 329, 332; solar energetic particle events, 251, 261; solar ionization of neutral gas, 347; solar optical filters, 302, 303; spacecraft shielding, 659; structural complications due to shielding, 282; sulphydryl compounds for human protection, 433; synchrotron, 461; thermal, 76, 78, 79, 136, 329; threat to electronics, 136; ultraviolet, 244; ultraviolet degradation of optical coatings, 334; ultraviolet sterilization of solid waste, 675; use in gamma-ray spectroscopy, 190; Van Allen belt, 39; waste heat, 399, 421, 433; X-ray background, 317 Radiation leakage, nuclear power plant, 176 Radio, aid to lunar-surface navigation, 311; constant contact with teleoperated robot, 311; dish antennas, 315; Earth-based astrometry, 321; Earth-Moon round trip time, 309; interference of lunar ionosphere with observations, 349; interferometer, 315-317, 319, 321, 323; low-frequency array, 319; quiet lunar environment, 315; superheterodyne detector, 321; very low frequency astronomy, 319, 349 Radio astrometry, 321; accuracy limited by water vapor, 321; lunar, 174, 321, 323, 325-327, 337; precision, 321 Radio sources, closely spaced, 321; compact, 321, 322; extragalactic, 319; jets from active galactic cores, 317; supernovas, 318 Radio telescope, 185, 316, 321, 325, 326; diffraction limit, 321 Radon, endogenous lunar gas, 339 Raman spectroscopy, 201 Ranger missions, 178, 199 Rb, see Rubidium RCS, see Reaction Control System Re, see Rhenium Reaction control system, oxygen/hydrogen thrusters, 28; OTV, 125; space station, 91 Reactor, accident, 463; carbon dioxide reduction, 504; column, 426; biological, 674; deuterium-helium-3, 466; deuerium-tritium, 463, 465, 466; fission, 462, 466; fission waste, 462, 463; fluidized bed, 426, 614-616; fusion, 79, 460-464, 609; gas extraction, 395; induced radioactivity to structure, 459; interior radioactivity, 465; hydrogen extraction, 395; laser power, 72; lifetime, 465, 472; loss of tritium, 464; MINIMARS, 465; nuclear, 26, 70, 245, 294, 421, 432, 459, 470, 478; orbital transfer vehicle, 37, 39; nuclear shielding, 389; plasma, 559-562; Ra, 464, 465, 466, 470; radiation damage to components, 459, 462, 465; replacement of components, 462, 465, 472; short-term radiation, 465; SP-100, 247, 478; tandem mirror, 75, 462; tokamak, 466 Reconnaissance, acquisition of global remote-sensing data, 308; Antarctica, 175; geologic, 307, 308, 311, 312; lava tube, 228; robotic lunar, 4, 308 Recycling, atmospheric, 518, 521, 673; Bios-3, 517; Biosphere II Test Module, 517; consumable, 559; fluorine, 426; importance in bioregenerative lunar base, 522; losses, 549, 550; lunar base water, 518, 551; lunar lander stage, 448; nutrients, 516, 521, 553, 556; plants, 519, 537; sewage, 532; waste, 243, 296, 297, 385, 519, 520, 548, 549, 670; waste in Biosphere II, 517; water, 177, 388, 551, 673 Reduced gravity, effects on humans, 668; lunar environment, 667 REE, abundance in plagioclase, 365; europium anomaly, 366; KREEP component, 362; rutile component, 370 Regenerative life support, 177, 293 Regolith (also see Soil), 70, 395; abundance, 275, 393; adsorption of nonpolar molecules, 615; adsorption of solar wind gases, 615; alteration by metal-fueled rocket exhaust, 433; apatite and whitlockite components, 521; Apollo 11, 190, 194; Apollo 17, 227; argon abundance, 66; beneficiation, 408, 476, 477, 610, 611, 613, 614, 616; breccias, 372; coating from sulfur-rocket exhaust, 433; cohesion, 279; compaction, 158; components, 385; concrete, 259, 493; construction material, 275; construction of shield wall, 275-279; content of useful elements, 393; correlation between ilmenite and helium-3 abundances, 668; correlation between titanium and helium contents, 609; cosmic-ray bombardment, 190; defined, 330; degassing analyses, 615; description, 195, 361; density, 71; development on ejecta deposits, 172; diffusion of implanted volatiles from grains, 615; drill core, 311; energy advantage in beneficiation, 477; energy required for heating, 613; escape of volatiles during mining, 612; evolution, 171, 174; excavation, 613, 616; extraction of hydrogen by microbial processing, 407; extraction of solar wind volatiles, 616; extraction of volatiles, 184, 228, 471, 472, 477, 480, 482, 547, 549, 610, 613-616; fines, 373, 374, 613; fusion, 71, 184, 361, 362; gas absorption, 341; gas concentrations, 184; generation, 170, 171, 212, 241; glass, 387; gravel component, 395; heat capacity, 477, 478, 613; helium abundance, 75, 189, 190, 194, 347, 349, 469, 547, 548, 610; helium-3 abundance, 189, 469, 609; helium-3 abundance with depth, 477; helium-3 content of mare, 469, 477; helium-3/helium-4 ratio, 616; history, 443; hydrogen content, 393, 394, 437, 444; ilmenite component, 611, 670; impact reworking, 373; importance to lunar colonization, 374; lack of ion-exchange minerals, 385; lack of water, 387; loss of trapped gases, 184; loss tangent, 611; lunar export, 170; lunar resource, 170, 411; mare, 189, 199, 477, 609, 613; Mare Tranquillitatis, 189; martian, 395; mass transport, 252, 277, 609, 612, 613; microwave heating, 611, 612; mining, 170, 184, 189, 195, 407, 408, 434, 470, 476, 478, 482, 547, 549, 550, 611, 612, 615, 668, 670; mobile miner, 434, 478; opening of structure by adsorbed water, 615; organic compounds, 389; penetration of helium ions, 469; penetration of mechanical drill, 409; plant-growth medium, 297; possible water source at lunar poles, 407; processing, 184, 475-478, 521, 609, 611, 613, 615; processing regolith agricultural soil, 518, 521; propellant, 407; pumping, 266; pyrolitic extraction of helium-3, 469, 478; radiation shielding, 134, 170, 177, 240, 247, 251-253, 259, 261, 264, 266, 275, 282, 285, 293, 294, 302, 408, 409, 522, 580, 581, 589, 604, 669, 670; raw material for glass production, 184, 432; raw material for special-purpose minerals, 387; relationship of grain size to helium content, 195; required amounts for helium production, 184, 189; shield wall, 275; shielding load on habitat, 252; size distribution, 609, 610; solar wind implantation, 173, 469, 477, 609; source of dust, 325; source of iron, 405, 549; source of nitrogen, 548; source of oxygen, 174, 184, 387, 411, 432, 475, 476, 479; subsurface temperature, 580, 612; sulfur abundance, 184, 432, 434; sulfur extraction, 434; tailings, 612, 616; thermal properties, 172, 589, 611, 613; thermal shielding, 580, 590; thermal storage sink, 584; thickness, 170, 185, 186, 195, 212, 216, 273, 393; titanium content, 189-195; trapped water, 393; trapping of transient-atmospheric cloud, 324; Tsiolkovsky Crater interior, 187; volatile abundance, 183, 184, 610; western Oceanus Procellarum, 161 Religion, lunar community church, 704; separation from governmental space policy, 703 Religious institutions, interest in lunar settlement, 703 Remote sensing, detection of ilmenite, 159, 160, 668; gamma ray spectroscopy, 189; ground truth, 189; large-scale reconnaissance, 307, 312; lunar, 155, 189, 190, 194, 201; lunar coverage, 199; orbital, 199; Raman spectroscopy, 202; titanium content of mare regolith, 190, 194; visible wavelengths, 203 Rendezvous, 22, 44, 56, 99, 179, 180; automated, 17, 20, 22, 23, 48, 63; Earth orbit, 6, 31, 36, 37; libration point, 102; lunar orbit, 6, 37, 42, 678; tether, 48, 56-58 Rescue, operation, 85, 151; requirement, 175; Skylab contingency, 180; support service, 399, 402; vehicle, 175 Resource, beneficiation system on mobile miner, 670; considerations, 170; development, 214, 323, 407, 409, 667, 669, 670, 697, 701; evaluation, 667, 670; exploitation, 408, 479, 643, 678, 693; exploitation on martian moons, 678; exploration, 170; exports, 150, 151, 170; extraction, 185, 409; factor in base site selection, 185, 186, 199, 267, 308, 668, 669; global distribution, 199; helium-3, 470, 475, 482, 609, 667; helium-3, terrestrial, 477; hydrogen, 393; ilmenite, 408; lunar, 4, 32, 67, 75, 76, 103, 407; lunar development organization, 699, 700; martian, 681; natural gas,
terrestrial, 468; recovery, terrestrial, 409; scientific preserve, 187; storage and distribution system, 284; sulfur, 429, 434; terrestrial minerals, 245; transport, 667, 668, 670; utilization, 134, 145, 146, 151, 163, 170, 173, 311, 407; volatiles, 170, 173; water, 387 Rhenium, 371 Rille, 220-227 Risk assessment, 95, 98, 100 Rn, see Radon Robot, assembly of spaceframes, 290; communications, 311; control, 311; deployment of geophysical instrumentation, 311; mobility requirement, 309; operational range, 311; teleoperated, 171, 172, 309; telepresence, 309 Rock, ballast in loader/crane, 177; component of regolith, 330, 371; development of fragmentation methods, 409; electrolytic smelting, 411, 412; excavation, 409; ferromagnetic signal compared to regolith, 371; field identification by spectral imaging, 309; formation conditions, 361; fusion during tunneling, 294; impact melting, 362; impediment to mining operations, 189, 194, 195; lunar types, 167, 362, 379; strength prop- erties in vacuum, 409; use as bricks, 228; vesicularity, 220; visual recognition in the field, 309 Rocket, 78, 81; chemical, 48, 79, 677; engine, 50, 125, 677; engine blast, 135, 139, 141; equation, 3, 6, 113, 116; exhaust contamination of lunar atmosphere, 184, 185, 337, 340; expendable system, 294; fusion, 75, 76, 79; interference with optical astronomy, 183, 327, 329, 332, 334; laser powered, 70; lunar-derived, 609; lunar launch, 71; mass, 75, 78, 79; mobilization of dust, 186, 330-332; propellant, 341, 361, 374, 393-395, 407, 408, 432, 433, 475; sulfur-fueled, 432-434 Roughness, impact crater, 213; laser-altimeter measurement, 209-212; lunar surface, 139, 140, 209, 213, 216, 217; radar measurement, 195, 210; simulated, lunar surface, 216; terrestrial features, 214, 215 Rover, cost, 178; Lunokhod 2, 158; Mars, 604; mission, 70; over-the-horizon communications, 311; power, 70, 593, 594; precursor mission, 17; reconnaissance, 228; robotic, 70, 309, 401; short-range, 178; tracks, 158; unpressurized, 18 Roving vehicle, Apollo, 178, 209, 619; described in 1901, 619; lunar base, 631 Rubidium, age dating, 372; removal from water by zeolites, 388 Rusty Rock, 371 S S, see Sulfur Sabatier CO2 reduction unit, 506 Safe haven, 177; lunar base requirements, 581; transporation depot, 89Salaries, commensurability with lunar cost of living, 700; economic support for settlement of Alaska, 698; government infusion of cash in early Australia, 699; lunar employees, 700; sources of capital for lunar entrepreneurs, 700; use of Alaskan oil revenues, 698 Salyut, 333 Sample, Luna-type return, 308; lunar types, 351; rake, 309 Sample collection, 311, 374 Sample return, lunar laboratory, 351 Sample return mission, 17, 18, 150, 307, 308, 311, 312, 361 Sample return vehicle, 17 Satellite, artificial martian, 662; COBE, 317; communications, 27, 44; degradation of components, 332; Echo Program, 249; gravity-gradient stabilization, 201; lunar orbiting, 18; Solar Maximum, 329, 332; solar-power, 398, 399, 401 Saturn V, 179, 180, 683, 684; equivalent launch, 700; use of space-shuttle engines, 448 Se, see Selenium Sea Treaty, 693; "common heritage of mankind" provision, 691; full title, 691; legal confusion with Outer Space Treaty, 693; number of ratifications compared to Moon Treaty, 693 Secondary impact, 223 Seismic activity, lunar, 231, 232 Seismic risk, lunar base, 220, 231-233; relevant factors, 232 Selenium, 431 Serenitatis region, 203 Settlement, Alaskan, 698; Antarctic, 245; Australian, 697-699; galactic, 637; lunar, 163, 261, 266, 281-283, 285, 290, 293, 296, 311, 698-700, 703; lunar autarky, 284; lunar complexities, 285; lunar environmental requirements, 175, 284; permanent lunar, 283, 401, 447; space, 237; subsurface lunar, 281 Shear, stiffness, 277; strength of building components, 270; transfer, 272 Shelter, buried, 259; collapsible, 249; compartmentalized, 285; landing site, 133, 135; meteoroid, 62; magnetic anomaly, 173; psychologically suitable, 293; storm, 252 Shielding, biological 75; collective plasma, 348-350; collimator tube, 330; concrete, 240; construction site, 259; Debye length, 348; dust, 332; exterior, 241; horizontal, 275; lava tube roof, 287; magnet, 75; radiation, 170, 333, 334, 337, 340, 385, 407, 433, 522, 669, 670; radio astronomical observatory, 163; source of secondary neutrons, 282; spacesuit, 663; structural support, 251, 266, 282; thermal, 400; vertical, 275 Shock, ground, 327; hazard, 99; impact on lava tube, 287; metamorphism of regolith, 361, 362, 371; mobilization of S and Zn, 371; reduction of spinel, 369; supernova wave, 318 Shock absorber, lunar lander, 128; Apollo LRV, 625, 626, 629 Shuttle C, 180 Si, see Silicon Silane, 206, 432, 476 Silica, 293, 294 Silicon, alloy with iron, 412, 417, 421; amorphous, 246, 594, 596; byproduct of fluorination of anorthite, 424, 426, 427; crystalline, 594; electrode in electrolytic cell, 417; reduction, 411, 412, 414-416, 418-420, 425; reoxidation to high-purity SiO₂, 421; lunar-derived, 206, 361, 374, 408, 411, 476; metal, 423; photovolatic material, 39, 398, 594, 595; purification of melt, 421; surfacing for mirrors, 421; steel, 421; tobermorite component, 387; zeolite component, 386 Silver, battery component, 148, 629; use in water disinfection, 554 Simulant, iron-rich basalt, 418; lunar regolith, 483-485, 520, 675; rhyolite, 485 Site selection, 175, 185; criteria, 217, 408; helium mining, 189, 190, 195; lava tube, 287 SKITTER, 633, 634 Skylab, 177, 180, 569, 570; carbon dioxide removal system, 504; craters on equipment, 332; exercise regimen, 661; human adaptation to reduced gravity, 668; leakage measurements, 341; space station, 237, 570; use of existing hardware, 685 Sodium, abundance in lunar pyroclastic coating, 362, 430, 432, 434; battery component, 246, 326, 431, 432; cation in tobermorite, 387; derivation from NaOH, 432; doping agent for fluorite, 427; extraction from NaF by electrolysis, 423; laser, 70; lunar atmospheric component, 338, 339; photosynthetic lighting, 539, 544; plagioclase component, 365; potential lunar sources, 669; pyroxene component, 365; reducing agent, 423-425, 427; rhyolite sand, 484; smectite saturation, 389; use in solar energy collection, 431; zeolite component, 386 Soil (also see Regolith), 29, 69, 71, 361, 369; abrasive qualities, 251; agglutinate abundance, 361, 362, 372, 374, 437, 613; aggregate in concrete, 483-487; agriculture, 518, 519; aids in moisture retention, 520; angle of repose, 140; Apollo 11, 194; Apollo 12, 419, 420, 437; Apollo 15, 437; Apollo 16, 437, 483; Apollo 17 deep drill core, 444; Apollo 17 orange glass, 437; autoreduction of Fe metal by impact, 372; ballast in loader/crane, 177; beneficial microorganisms, 532, 533; beneficiation, 395, 610; blast-barrier material, lunar, 145; buffering qualities, 531; bulldozing, 170; capillary forces, 533; cation exchange capacities, 533; cohesion, 145; compaction, 158; component of lunar cement, 489; components, 440; compositional relationship to impact melts, 362; contents of returned Surveyor 3 scoop, 331; core samples, 373, 443; correlation between helium abundance and maturity, 610; correlation between hydrogen abundance and maturity, 437, 443; correlation between hydrogen and agglutinate abundances, 438, 440; correlation between size fraction and helium abundance, 610, 611; correlation between volatile abundance and maturity, 437; cosmic-ray shielding, 361; Biosphere II, 516; definition, 361; density, 185, 251, 393, 520, 612; disturbance by Surveyor 3 landing, 331; drainage, 533; energy required for fusion, 420; enrichment of helium in ilmenite fraction, 441; erosion damage to Surveyor 3, 332; exposure age, 372; fauna in Biosphere II, 517; feedstock for electrolytic processing, 412, 421; ferromagnetic resonance, 371, 374; fertilization with waste water, 521; fine fraction, 438, 520; food production, 519, 520; formation, 371-373; fusion, 330; fusion temperature, 72; gas extraction, 344, 393, 394; gas yield, 395; gaseous exchange, lunar, 520; gourmet dining, 393; grain sizes, 372; growth medium, 297, 520; heat capacity, 395; heating for gas extraction, 341, 395; helium abundance, 194, 394; heterogeneity, 533; highland samples, 362; hydrogen abundance, 367, 393-395, 397, 437-440; hydrogen abundance at depth, 469; ilmenite distribution, 611; impact fusion, 370, 372; impact reworking and hydrogen diffusion, 437; importance for lunar base, 361, 374; ions essential for plants, 520; justification for floating foundations, 267; liming with fines, 520; lunar simulants, 483, 484, 520, 611, 624; lunar-derived fertilizer, 520; martian, 395; mass fraction as trapped gases, 341; mature layers, 373, 444; maturity, 171, 372-374, 437, 444; mechanical properties, 139, 140, 273, 326, 487; metal component, 371, 398; meteorite component, 361; microbial communities, 516, 532; micrometeoroid shield, 252; mining, 184, 395, 604, 607; mobilization by engine exhaust, 141, 144, 145; moisture, 297, 520, 522; moving, 395, 604, 607; native iron component, 371; nitrogen fixation by legumes, 522; oxygen extraction, 35, 426; particles adhering to Surveyor 3, 331; particle size distribution, 140, 142, 484, 487; permeability, 395; pH, 520; physical properties, 140, 622; plant growth, 389, 520; porosity, 158, 395; possible deficiency of plant nutrients, 520; possible effect of hydrogen content on concrete quality, 487; possible release of heavy metals, 520; prevention of water loss, 520; propellant, 206; quantity for human-equivalent composition, 393; removal for construction of large space structures, 341; reworking, 372; plant root distribution with depth, 520; SEM inspection, 487; siderophile content, 371; sieving, 395; single-domain Fe metal, 372; solar wind component, 361, 372, 374, 393, 395, 421, 437, 520, 609; sources of acidity, 519; spinel component, 369; sulfur content, 430, 433; surface-correlated sulfur, 429; terrestrial, 519; testing methods, 520; thermal conductivity, 395; thermal insulator, 395, 579, 589; trapping of
transient-atmospheric cloud, 324; types in Biosphere II, 514; vaporization, 342; water relationships, 520; water requirement in concrete mixing, 487 Solar array, 400; advanced photovoltaic, 594; operation in continuous gravity field, 595; OTV, 37, 39; radiation degradation, 39 Solar energy, 29, 135, 599-601; collector, 613; collectors as radiation shielding, 274; collectors as roof loads, 269, 274; electrical conversion, 431; gas heating in fluidized bed reactor, 615; life support electrical requirement, 409; lunar flux, 395; lunar power source, 302, 326; production of propellants, 447; regolith heating, 395, 613; source of illumination, 302 Solar flare, research objective of Solar Maximum Mission, 332; radiation hazard, 252, 261, 275, 330, 331 Solar Maximum, information on orbital environment from retrieved parts, 325; recovery mission, 33; satellite, 329, 332 Solar power, 29, 54, 62, 404; satellite, 397-399, 401, 447, 450 Solar sails, use in Earth-Moon trajectories, 48 Solar wind, 322, 342, 347; abundance of Fe metal in regolith, 372; Alfvén speed, 348; atmospheric absorption, 342; atmospheric loss rate of Venus and Mars, 342; bombardment of Moon, 372; carbon, 338; composition. 339; concentration of gases in ilmenite, 670; containment, 615; coupling to lunar ionosphere, 339; deflection by magnetic field, 173; density, 348; depth of penetration into regolith grains, 609, 610; diffusion from regolith grains, 615; effect on lunar albedo, 168; electric field, 339, 347, 348; energy, 469; exposure time of regolith, 190; extraction from regolith, 444, 478, 482, 609, 610, 614-616; flux, 330, 339, 340; heavier elements, 339; helium, 75; implantation in regolith, 173, 194, 339, 373, 395,438, 441, 447, 469, 477, 609, 610, 615; intensity, 338; interaction with ionized cloud, 348; interaction with lunar ions, 339; interaction with lunar surface, 339; interaction with neutral gas, 339, 343; interaction with terrestrial magnetosphere, 244; interaction with unmagnetized gas cloud, 348; ions, 338, 343; lunar surface potential, 339; magnetic field, 348; major components, 337; mass flux, 339, 342; plasma source at Moon, 340; removal of gases added to lunar atmosphere, 341, 342, 347; removal of lunar transient-atmospheric cloud, 324; resistance of lunar concrete, 389; shielding provided by atmosphere, 361; source of charged-particle radiation, 330; source of helium, 170, 373, 460, 469, 475, 477; source of hydrogen, 387, 393, 408, 437; source of lunar atmosphere, 183, 337, 338, 347; source of noble gases, 411, 438, 440; source of volatiles in regolith, 477, 478, 480, 547, 609; spectrometer, 338; sputtering, 331, 338; stripping of lunar atmosphere, 342, 347-350; thermalized plasma, 340; velocity, 347 South pole (lunar), 205; base heating requirement, 582; heat loss from uncovered module, 581; heat transport and rejection system, 582, 584, 588, 589; local lunar environment, 581; possible base site, 580, 581, 589; thermal variations, 591 South Pole (terrestrial), Amundson expedition, 175 Soybeans, 525, 526, 528, 529, 538; composition, 525; crop in Biosphere II, 516; lipid content, 529, 530; optimal protein source for early lunar base, 297; part of adequate diet, 530; plasma reactor fuel, 559; potential lunar base plant, 525 Space law, 691-694; history, 693 Space station, 5, 6, 17-20, 22, 25, 29, 31, 33, 36, 37, 95, 97, 102, 116, 123, 126, 180, 246, 301, 399, 400, 475, 504, 683, 684; airlock, 580; applications of special-purpose minerals, 385; assembly and integration, 93, 604; altitude, 37; atmosphere of habitable environment, 504; automation technology, 604; avionics, 25, 29; centrifuge, 354; communications, 27; comparative cost, 175; components, 88; contamination, 99; crew. 507, 570, 603; damage, 95; data management system, 26; design, 23, 83, 87, 90-92; Earth-orbital, 133, 134, 164, 174; ECLS, 504, 505, 554; engine, 63; environment, 582; explosion hazard, 95; flight attitude characteristics, 90, 91; fueling depot, 97, 99; gas-leakage rate, 341; guidance, navigation, and control, 28; habitat lighting, 302, 303; habitation module, 249, 604; heliostat, 302; human adaptation to reduced gravity, 668, 670; import of lunar products, 472, 550, 670; insulation, 589, 590; laboratory module, 476; life support systems, 547, 550, 553; logistics module, 400; lunar base support, 83; lunar lander maintenance, 127, 128; lunar orbital, 25, 123, 133, 481, 551; maintenance facility, 125; meteoroid detector, 334; module, 184, 237, 249, 251, 294, 504, 507, 509, 580, 581, 589; momentum storage, 91; orbit, 62, 103; OTV base, 119, 123; node, 295, 580; planetary mission support, 83, 454; power system, 28, 29, 504; program, 20, 25, 26, 83, 87, 684, 688, 689; reference configuration, 296; refueling capability, 95; science, 83; software, 27; solar optics, 301; Soviet, 244; space transportation node, 103, 123; spaceframe, 289; support facilities, 83; technology, 3, 25, 26, 29, 275; thermal control, 579-585, 589; total volume, 252; waste material processing, 562; water disinfection, 553 Space shuttle (also see Space Transportation System), 237, 594; crew training, 33; design phase, 31; development, 32; external tank, 268, 394; lessons for lunar transportation system, 31, 34; main engines, 22; microgravity combustion research, 654; orbiter processing, 32; payload capability, 200; payload integration process, 34; program, 31, 33, 684, 687; reliability, 669; research in gravitational biology, 670; return of Solar Maximum Satellite components, 329, 332; mission duration, 503, 569. Space transportation, 32, 47, 54, 64, 65, 67, 81, 325, 479, 493; alternatives, 63, 65; cargo, 448; cost for lunar exports, 450, 457; costs, 32, 49-54, 64, 249, 319, 393, 398, 401, 402, 407, 447, 448, 450, 457; depot, 83-85, 88, 90-93; ferry vehicle, 450; fusion-powered vehicles, 481; infrastructure, 61, 63, 64, 67, 405; lunar, 3, 6, 31-35, 47, 61, 70, 72, 447; lunar capacity, 448; model, 44, 48, 49, 51-53, 61-64, 66, 67; node, 18, 31, 33, 101, 102, 283, 450; node at L1 libration point, 102; operating benefit, 52; operating cost, 49; operations, 31-33; performance, 54; requirements, 3, 4, 14; requirements for lunar base operation, 477; reusable system, 447, 448; scenario, 6, 9, 12, 31, 34; technology, 54, 61; terrestrial requirements, 102; use of beamed power, 399; use of lunar-derived propellant, 450, 481 Space Transportation System (also see Space Shuttle), 5-9, 13-15, 32-34, 35, 44, 47, 52, 54, 61, 64, 67, 103, 119, 123, 133, 175, 239, 250, 332, 399, 569, 616; cost, 35, 49; development, 32; launch of LDEF, 332; mission 61A, 354; mission 61B, 275; satellite retrieval, 332 Spacecraft, artificial-gravity equipped, 355; exposure to lunar environment, 329; gas leakage, 341; lunar, 31-34; lunar polar-orbiting, 308; measurement of solar wind, 339; micrometeoroid detector, 330; outgassing, 331; reference points for VLBI observations, 322; retrieved by STS mission, 332 Spacehab, 237 Spacesuit, 90, 136, 178, 660; gloves, 668; inducement of carpal tunnel syndrome, 662; mass, 663; micrometeoroid protection, 660; motion restriction, 621, 661-663; physical workload, 662; thermal environment, 660; radiation shielding, 663 Specific impulse, 6, 13, 15, 35, 56, 57, 63, 65, 66, 70, 71, 85, 121, 124, 180; arcjet engine, 42; chemical engine, 36, 48, 62, 449; cryogenic engine, 3, 4, 9, 13; effect of nozzle extension on SSME, 448; electrostatic engine, 57; fusion engine, 78; ion engine, 36, 41, 42, 54, 66; laser engine, 70, 71; lunar module, 134; Mars Transfer Vehicle, 455; nonparallel engines, 124; nuclear engine, 48; OTV, 9, 13, 36, 43, 56; O₂/H₂ engine, 39, 63; powdered aluminum, 207, 447; RCS engine, 37, 125; silane, 206; solar-electric engine, 43; sulfur-fueled rocket, 432, 433 Spectroscopy, gamma-ray, 189-193, 195, 201; lunar reflectance, 469; quasar, 317; Raman, 201, 202 Sr, see Strontium STS, see Space Transportation System Storage system, battery, 593; cryogenic, 97; electrochemical, 594; highpressure gas, 596; momentum, 91; power, 403, 602 Storm shelter, 252 Strontium, 372 Structural design, lunar habitable structure, 496; planning for meteoroid impact, 283 Sulfur, 429; abundance at midocean spreading centers, 429; basis for life cycle, 433; battery component, 246, 326, 431, 432; by-product of oxygen production, 429, 434; chemical properties, 430, 432; Claus reaction, 434; combustion to sulfur dioxide, 433; compounds, 429, 610; concentration in ilmenite, 432; concentration in pyroclastic deposits, 170; concrete, 430; dietary trace element, 433; dilution in mare regolith by highland components, 429; electrical properties, 430, 431; electron shell configurations, 433; energy requirements for fusion, 430; energy requirement for production, 434; extraction from lunar materials, 429. 430, 432-434, 477, 610; fluid, 430; fluxing agent, 432; impact remobilization, 371; kinetics of release from regolith, 184; loss during pyroclastic eruptions, 429; loss during regolith formation, 429; lunar abundance, 229, 393, 429-432, 434; lunar applications, 429, 430, 433, 434; lunar production, 433, 434; lunar resource, 429, 434; mechanisms of natural lunar concentration, 429; melt content and troilite formation, 371; metabolizing organisms, 429, 433; metal-sulfate source, 430; mining, 430; mobilization by shock, 371; production of sulfuric acid, 432; propellant, 228, 432-434; radiolytic extraction from SO₂, 434; requirement for plant growth, 556; sealant, 430; sulphydryl compounds, 433; surface correlated, 429; terrestrial basalt component, 429; troilite component, 429, 430; use in fertilizer, 228, 433; use in photocells, 431, 433; use in thioelastomers, 430; volatility and formation of troilite, 371; yield relative to oxygen in ilmenite reduction, 429 Sulfur dioxide, exhaust from sulfur-fueled rocket, 433; fluid uses, 430; liquid temperature range, 431; production by burning sulfur, 433; solvent properties, 431 Supernova, extragalactic, 316; Large Magellanic Cloud, 317, 318; remnants, 316, 318; shock wave
interaction with interstellar medium, 318; Type I, 318 Sun, Apollo LRV attitude indicator, 627, 628; energy source for regolith processing, 395; elevation at lunar poles, 164, 178; illumination angles for landing, 176, 620, 668; particle acceleration, 319; similar stars within 25 parsecs, 637; source of interior lighting, 302; source of primary radiation, 329, 659; source of relativistic electrons, 317; spectrum, 329; thermal exposure, 430; tracking, 301, 598-601, 668 Sun synchronous orbit, 69, 199, 639 Surface exploration, robotic, 307; cause of environmental damage, 241 Surface material, adsorption of lunar atmospheric gases, 339; photometric properties, 158 Surveying, lunar surface, 28 Surveyor, microcrater data, 332; photographs, 334 Surveyor 1, 161 Surveyor 3, analysis of returned components, 334; degradation of thermal-control coatings, 333; disturbance of soil during landing, 331; duration on surface before Apollo 12 visit, 331; dust contamination, 331, 332; end of mission, 331; evaluation of returned components, 331; interaction with Apollo 12 lunar module, 142, 331; parts returned to Earth, 325, 331; survival of bacteria on Moon, 660; television camera shroud, 330; Apollo 12 landing site, 179 Surveyor 7, evidence of suspended dust in lunar atmosphere, 344; photographs of horizon glow, 330 Surveyor missions, 199 Survival, lunar colony, 433; optimal gravity environment, 569; requirements in space environment, 547 Sweet potato, 516, 538 System integration, 27, 684; ECLS costs, 503; lunar-surface vehicle, 607 ## Ta, see Tantalum Tantalum, capacitor failure in Surveyor 3, 331; rutile component, 370 TDRSS, see Transmission and Data Relay Satellite System Telepresence, 309, 311 Telescope, 323, 325; ad Telescope, 323, 325; adaptive optics, 327; astrometric facility, 638; autonomous operation and maintenance, 326; collimator shield, 330; contamination, 323, 325, 334; cost, 325; ground-based, 156, 159; isolation from vibrations, 327; lunar far infrared, 319; micrometeoroid threat, 330, 331; optical, 315, 185; pointing accuracy, 638; radio, 185; restoration of optical coatings, 333; system calibration, 325; thermal control, 333 Temperature, Apollo 17 site, 329; basaltic lava, 219; biomass system, 246; buffering by soil in CELSS, 531, 533; bulk gas in plasma reactor, 560; computer control, 296; control during lunar concrete curing, 490, 491; control of loss tangent of regolith, 611; control of microwave coupling with regolith, 611, 612; cool plasma reactor, 559; effects of variations on sealing techniques, 297; effects on viscosity of liquid sulfur, 430; effects on cryogenic depot, 95, 99; electron in plasma reactor, 560; extraction of volatiles from regolith, 393, 394, 547; factor in atmospheric loss rate, 339; factor in conductivity of molten silicate, 413, 414; factor in plant productivity, 544; factor in yield of regolith volatiles, 470, 477; flame, 655; freon loop, 589; fusion reaction, 75, 77, 460, 463, 465; habitat design factor, 252; increase in fusion reactor shield, 463; laser irradiated regolith, 71, 72; lava, 219; liquid helium-3, 616; lunar daytime relative to sulfur fusion, 430; lunar diurnal change, 361, 580; lunar environment, 506; lunar exospheric, 342; lunar extremes, 251-253, 287, 293, 297, 326, 579, 580, 589, 620; lunar polar, 329; lunar rate of variation, 329; lunar shaded regions, 395; lunar surface, 334, 342, 349, 584, 585, 615; mare basalt liquidus, 380; microbial growth, 506, 541; microwave heating of regolith, 614; mixing of lunar concrete, 490; module control, 581, 590, 591; operating range for fuel cell, 127; plasma, 77, 78, 79; plasma reactor, 562; radiator, 149, 584-586, 588, 616; regeneration of activated carbon, 552; regolith fusion, 71, 72, 394; regulation by natural air movement, 297; rejection, 586; requirement for lunar cement production, 497; requirement for photosynthesis, 541; sensitivity of inflatable material, 253; sink, 582-585, 588; sintering of regolith, 612; spacesuit regulation, 660; spiking in microbial growth systems, 553; stability inside lava tubes, 228, 287; subsurface, 293, 580, 589, 612; supercritical xenon, 40; superfluid helium-4, 616; tolerances of Apollo LRV, 629; transportation of lunar concrete, 490; variations with latitude, 580, 581; waste heat, 433 Temperature control, 297, 331, 333, 579; artificial intelligence, 522; Biosphere II, 514; CELSS, 544; lunar lander, 126, 135; Apollo LRV, 629 Temperature control system, 255, 584 Tether, 55-58, 61, 65, 67; angular momentum, 57, 58; applications, 55, 58; characteristics, 55; configurations, 48, 55; damage, 58; deployment, 48, 57; Earth orbital, 48, 54; electrodynamic, 66; energy, 57; length, 56-58; lifetime, 58; lunar orbital, 48; mass, 57, 58; material, 55, 57, 58; missions, 58; platform, 50, 55-57, 65-67; propulsion, 61, 65-67; reel, 57, 58; rendezvous, 56-58; repair, 58; spinning, 47, 48, 51-54, 55, 56; tension, 57; tip acceleration, 58; tip speed, 56; tip vehicle, 58; vibration, 58. Th, see Thorium Thermal conductivity, 585; ferrosilicon, 421; polymer, 252; regolith, 71, 580, 611, 613 Thermal properties, glass composite material, 398; regolith, 172 Thermonuclear power, 459, 461 Thorium, 168; content of Mare Smythii lavas, 171; content of Smythii Basin soils, 170; enrichment in Balmer area, 172 Thrust fault, 232 Ti, see Titanium Tilapia, aquaculture system in Biosphere II, 515; feeding on processed plant biomass, 521 Titanium, abundance in Apollo 17 regolith, 194; abundance in Flamsteed area, 193; abundance in lunar regolith, 189-195, 361, 374, 609; abundance in Mare Tranquillitatis, 191; abundance in northwestern Oceanus Procellarum 159; abundance in western Oceanus Procellarum, 160; basalt component, 216, 222, 227, 362, 369, 373, 381, 609; construction material, 240; correlation with helium content of regolith, 187, 189, 190, 609; electrolytic reduction, 419, 420; glass component, 190; ilmenite component, 159, 170, 190; lunar-derived, 408; lunar resource, 227; mare regolith classification, 190; pyroclastic component, 170, 228; pyroxene component, 365; remote detection in mare regolith, 159, 190, 191, 193; spectral absorption band, 159; spinel component, 366, 369; variety of chromite, 368 Titanium basalt, Apollo 11, 170, 189; Apollo 12, 189; Apollo 15, 189; Apollo 17, 189, 190; Luna 16, 190; Luna 24, 190; Mare Smythii, 170, 174; Tsiolkovsky, 186, 187 Tobermorite, 386 Trace element, 362 Trajectory, 33, 78; abort, 33; aeropass, 65; correction maneuver, 37; descent, 113; dust mobilized by engine exhaust, 142, 275; Earth-Moon, 48, 101, 103; Earth-Moon mission limitations, 15; free-return, 64; Hohmann transfer, 453; low-gravity aircraft, 654; lunar atmospheric gases, 339, 341, 347, 349; lunar options, 33; minimum energy, 164; multiple perigee burn, 62 opposition class to Mars, 453; Transfer vehicle, 103, 454, 455 Transmission and Data Relay Satellite System, 27 Transport system, 255; base thermal control, 466, 579, 588, 589 Transport vehicle, lunar surface, 136 Transportation (also see Lunar surface transportation and Space transportation), advantages of inflatable structures, 250; Antarctic, 247; cislunar, 32, 61, 63, 70, 448, 449; cost, 246, 261; costs of life-support requirements, 503, 547; Earth-to-Moon costs, 549, 550, 613; gas extracted from regolith, 615; inflatable structure, 249; infrastructure, 65; interstellar, 644; lunar base requirements, 475; lunar module, requirements, 135; orbital facility, 62, 65; orbital transfer vehicle, 67; planetary surface, 245; requirements, 181; tether assisted, 61, 65-67; volume of inflatable structures, 249 Trauma, disorders caused in the workplace, 659; potential from work in spacesuit, 662 Traverse, 171-73; Apollo LRV, 629; communications, 311; geophysical measurements, 173; lunar, described in 1901, 619; teleoperated robots, 307, 311, 402 Treaty (also see Moon Treaty, Outer Space Treaty, Sea Treaty), possible constraints on lunar construction, 283; International Antarctic, 175 Tritium, diffusion in regolith particles, 615; fusion fuel, 459; parent of helium-3, 460, 477 Troctolite, 362, 365 Troilite, 429 Tungsten, 371 U U. see Uranium Uranium, 168, 470; energy release in fission compared to helium-3 in fusion, 470; isolation by centrifuging, 356; use of fluorine in processing, 423 V V, see Vanadium V, stellar luminosity class, 637 Vacuum, chamber for free-fall simulation of zero-g, 654; degradation of equipment, 99; effects on concrete, 490, 491, 497-499; effects on habitat material, 252; effects on lunar astronomical observatories, 329, 333, 334; freeze-drying waste material, 506; habitat design issue, 239, 251, 252, 268, 282; lunar, 170, 253, 409, 412, 506; outgassing of materials, 497, 499; quality at lunar surface, 315, 329, 337, 341, 342, 347; regolith adhesion, 409; spacesuit requirement, 660; use in regeneration of activated carbon, 505; uses of microwaves, 461 Vanadium, ilmenite component, 366 Vanadium pentoxide, 432 Vapor, barium interaction with solar wind, 348; catalytic ammonia removal, 246, 552; compression distillation, 246, 551; diffusion in water reclamation system, 505; distillation of water, 551; liquefaction, 96 Vapor pressure, working fluid in heat pipe, 588, 599 Vapor pressure, chlorine and iodine compared, 553; space station outgassing, 97; subcritical system, 97; transport of elements, 429, 430 Vapor cycle system, base thermal control, 585, 589 Vegetables, hydroponic growth, 674 Venus, 638, 639, 643; atmospheric loss rate to solar wind, 342; collinear Lagrange points, 642; dominant atmospheric component, 638; interstellar laser transmitter, 639; mesosphere, 638, 639; obliquity, 639; orbital laser, 639; planetary laser, 639; uniformity of gravity field, 639 Vermiculite, 389 VLFA, see Very low frequency array Volatiles, abundance in micrometeoroids, 183; by-product of helium-3 mining, 547, 549; central separation facility, 611; coating on lunar pyroclastic material, 228, 429, 431; indigenous lunar, 170, 411; cost of extraction from regolith,
549; elements, 170, 362, 394; geologic traps, 429; lunar resource, 173, 176; lunar-derived, 429, 547, 549, 550; organic compounds in water, 551, 552; phases on Moon, 379; products of rhizosphere microorganism community, 532; production from regolith, 430, 434, 547; radioisotopes in fusion power plant, 466; replacement of lighter elements with sulfur, 429; solar wind source, 547; utilization in life support, 547, 549, 550; waste product, 550 Volcanism, 158, 160, 167, 379, 382; association with impact basins, 380; intercrater, 160; KREEP, 172; planetary, 160; postmare, 160; premare, 156 W W, see Tungsten Waste, biological, 228; collection and transfer in ECLS, 505; control, 245, 522; conversion, 52, 560; daily production, human, 566; deep geologic disposal, 463, 472; destruction with sulfuric acid, organic, 432; disposal, 228, 506, 556, 559; disposal ratings of fusion reactors, 462; fish, 515; freeze drying, 506; handling equipment, 566-568; hazardous, 385, 389; human, 297, 560, 562, 563, 566-568; industrial, 228; management, 238, 246, 400, 519-522, 537, 538, 542, 554, 559, 566; management facility, 399, 400; material processing, 561, 562; materials as sources of carbon, 550; methane, 432; nuclear, 463; processing, 505-507, 559, 563; processor capacity, 564; production, 521, 559, 563, 566-568; radioactive, 389, 460, 462, 465, 466; radioactive disposal, 385; radioactive repository, 463; recycling, 243, 245, 296, 517, 519, 520, 548, 549; recycling and potential for disease, 660; recycling with special-purpose minerals, 385; removal of organic compounds, 560; renovation with special-purpose minerals, 385; separation by centrifuge, 353, 356; sulfur dioxide treatment, 434; transportation, 431, 521; treatment, 516, 559 Waste heat, facility for fusion reactor, 466; low-temperature rejection, 433; lunar base power system, 505; practical uses, 505; radiation, 433; regolith fusion cell, 420, 421; rejection, 433; use for phase-change water reclamation, 505; use in ECLS, 505; use in heating ducted hot air, 245; use in power generation, 513 Waste water, definition, 520; energy requirement for processing, 597; multifiltration, 246; plumbing, 521; recycling by plant transpiration, 521; use in fertilizing plants, 521, 522 Water, 294, 296, 519, 537, 542, 549, 559; 22-GHz line, 321; abundance on Moon, 273, 283, 289, 361, 379, 411, 429, 380, 387, 393; annual replacement requirement per person, 549; aquaculture in Biosphere II, 515, 516; by-product of helium mining, 475, 477; centrifugal separation from air, 552; chemical role in concrete processing, 498; Claus reaction, 434; condensation of vapor, 539, 551; conservation by using ice in concrete mixture, 491; content of concrete, 498; content of minerals of martian satellites, 411; control in CELSS, 544; conversion to urine, 566; corrosive agent, 432; decision on potability after contamination, 554; detection of contained pathogens, 554; disinfection, 552, 554; dispersion in lunar soil, 520; effect on strength of cement, 484; effective abundance in regolith, 393, 610; electrical heating, 597, 602; electrolysis for oxygen production, 504, 549, 562; evaporation during distillation cycle, 551, 552, 648; evaporation from concrete, 490; extraction from martian soil, 395; factor in plant productivity, 544; fate in photosynthesis, 543; fecal matter as source, 554, 561, 566, 568; filtration-type recovery unit, 506; fish tanks in Biosphere II, 516; food, 507; forms of occurrence in concrete, 498; fuel-cell byproduct, 126, 127, 246; generation during reduction of ilmenite, 521, 562; heating requirement for lunar base, 597; heavy, 469; holding capacity of ground basalt, 520; holding capacity of lunar soil, 520; hydrogen equivalent in regolith, 393; hydrogen production, 432; hydrogen requirement for production, 437, 444, 470; hydrosphere of Biosphere II, 513; hygiene, 504, 552, 554; ice, 321; ice at lunar poles, 103, 164, 342, 401, 407, 411, 601; iodinated, 553; light, 466; loop, 504, 508, 547; loss, 508, 520, 549; loss from concrete, 489, 498; lunar base requirements, 176, 177; lunar-derived, 393, 547, 549; management, 126, 506, 554; mass requirement for concrete processing, 273; membrane evaporation, 551; metabolic product, 508; microbial contamination, 552; microbial control by ultraviolet irradiation, 554; NASA potable standards, 551; natural purification on Earth, 519; nutrient enhancement for plant growth, 297; outgassing from concrete, 498; outgassing on lunar surface, 324; ozone disinfection, 553; pH in lunar soil, 520; polishing, 552; possible contamination of Apollo samples, 480; potable, 246, 520, 522, 537, 549, 554, 568; potential yield of fish, 520; production, 407, 423, 432, 483, 521; production plant, 494; purification, 388, 480, 518, 519, 543, 551; quality, 508, 554, 556; radiation shielding, 259; reactor cooling, 463; reclamation, 505, 508, 551; reclamation as fuel cell product, 432; reclamation combined with waste processing, 507; reclamation from urine, 246, 551; reclamation in ECLS, 504, 505; reclamation in CELSS, 296; reclamation system, 507, 508; recovery, 507, 508, 551, 552; recovery as by-product of helim 3 extraction, 549; recovery by evaporation, 551; recovery from liquid waste, 553; recovery system, 506, 554; recovery with thermoelectric integrated membrane evaporation, 246; recycling, 177, 388, 543, 551; recycling in Bios-3, 517; recycling system, 556; regeneration, 537; regeneration in Biosphere Test Module, 517; relationship to lunar transient phenomena, 408; removal of solid wastes, 521; replacement requirement, 549; requirement for photosynthesis, 541; requirement for space travelers, 293; requirement for sulfuric acid production, 432; requirement in concrete processing, 487, 498; retention by vermiculites, 389; role in concentrating terrestrial sulfur, 429; separation, 126, 388, 582; shower, 552; shuttle potable system, 553; solar heating, 597, 600-602; solubility of silicate minerals, 519; soluble fertilizer, 521; soluble inorganic salts, 553; sterilization, 506, 554; substitution of sulfur compounds in chemical processes, 430; sulfuric acid production with sulfur dioxide, 432; supercritical oxidation in waste processing, 553; supply systems as sources of disease, 552, 600; supply to plant roots, 542; synthesis, 519; tank, 148, 296, 508; thermal control, 126, 539, 579, 580, 582, 599, 602; thermal disinfection, 553; thermochemical splitting, 432; total annual replacement requirement, 549; total organic carbon content, 554; transpiration, 522; transpiration by plants, 520, 534; transportation from Earth, 387, 602; treatment processes, 552; tritiated, 464; usage at lunar base, 520; usage for drinking, 566; use as ice in mixing lunar concrete, 490; use in hydroponics, 296; vacuum-induced loss from concrete, 498, 499; washing, 506, 552, 554; waste treatment, 246, 385; wick evaporation, 552 Water hammer, hazard during propellant transfer, 99 Water hyacinth, 521 Water vapor, 551; atmospheric distribution, 321; column density, 321; delay of radio wavefront in troposphere, 321; diffusion through membrane, 551; loss from concrete, 498, 499; masers in other galaxies, 315; radiometer, 321; recovery, 135, 551, 552; release during impact of hydrated meteorite, 183; tropospheric effects on radio astronomy, 321 Water vapor pressure, ice, 490 Wheat, 526, 529, 530, 536, 538, 541; atmospheric requirements, 528; Biosphere II, 516; composition of edible portion, 525; crop in CELSS, 525, 535; crop in plant-growth module, 556; growth dynamics, 525, 526; hydroponic, 529; production, 521, 529; water transpiration, 520; yield studies, 538, 541 Workload, increase in spacesuit, 662 #### X Xe, see Xenon Xenon, abundance in regolith, 393; ion-engine propellant, 37-44; orbital storage, 45 X-ray, absorption bands in rock, 309; binary stars, 315, 318; detection of distant galactic clusters, 316; detector, 319; diffuse background, 317, 319; identification of candidate neutron stars, 318; lunar surface environment, 327; orbital spectroscopy, 156; use in measuring Hubble parameter, 316; variability of emissions from active galactic nuclei, 317 X-ray observations, galaxy clusters, 316; objects in globular clusters, 318; stellar remnants, 318; supernova remnants, 318; synchrotron radiation, 317; supernova shock wave interaction with interstellar medium, 318 #### Z Zeolites, 387, 388 Zero gravity, 99; mining operations, 411 Zinc, 412; abundance in lunar pyroclastic coating, 170, 430, 431; battery component, 148, 629; photocell component, 431 Zirconium, armalcolite component, 370; ilmenite component, 366, 370; mobilization by shock, 371 Zn, see Zinc Zond, lunar photography, 6, 157, 159 Zr, see Zirconium ### LOCATION INDEX Alaska, 698, 700 Ansgarius Crater, 172 Antarctica, 175, 176, 237, 243, 244, 245, 246, 247 Aristarchus, 402 Australia, 402, 697-699 Balmer area, 168, 172 Balmer Basin, 168, 172, 173 Chernobyl, 464 Cone Crater, 620 Copernicus Crater, 394, 402 Crisium Basin, 172 Flamsteed region, 193 Goddard A Crater, 171 Grimaldi Crater, 157, 158, 160, 594, 654-656 Gruithuisen K Crater, 219, 223, 402 Hadley Rille, 214, 411 Halley's Comet, 339 Iceland, 215, 216, 217 Imbrium Basin, 311 Imbrium region, 189 Iridum Crater, 223 Kepler Crater, 402 Lacus Veris, 123 Large Magellanic Cloud, 317, 318 Lichtenberg Crater, 159, 160 Mare Fecunditatis, 190 Mare Frigoris, 619 Mare Humorum, 227 Mare Imbrium, 191, 222, 227, 619 Mare Marginis, 168, 171, 173 Mare Nubium, 580, 581 Mare Orientale, 156, 157, 161 Mare Serenitatis, 190, 195, 219, 222, 227, 228, 469 Mare Smythii, 163-174 Mare Tranquillitatis, 189-194, 222, 610, 611, 669 Mare Vaporum, 619 Marginis Basin, 168, 171 Marius Crater, 160 Marius Hills, 219, 225 Mars, 18, 29, 33, 47, 62, 75, 78, 79, 83-85, 88, 90, 93, 95, 96, 184, 243, 244, 342, 385, 393, 411, 447, 453-458, 475, 547, 550, 559, 569, 571-574, 619, 637-639, 647-650, 656, 657, 660-663, 667, 677-681, 686, 687, 701 McMurdo Station, Antarctica, 245 Mercury, 217, 638, 667 Meteor (Barringer) Crater, 213-215
Neper Crater, 171 Oceanus Procellarum, 155-161, 190, 191, 213, 222-227 Orientale Basin, 157, 161, 168 Peary Crater, 176, 178 Phobos, 662 Purkyne U Crater, 171 Reiner Gamma, 158 Rima Bode, 195 Ross Ice Shelf, Antarctica, 175 Runge Crater, 172 Serenitatis region, 203 Shorty Crater, 195, 444 Smythii Basin, 163-174 Smythii region, 163-174 Stillwater Complex, 380, 381 Sulpicius Gallus region, 195 Taurus-Littrow region, 190, 194, 195 Tsiolkovsky Crater, 186, 187, 668 Venus, 342, 638, 639, 642, 643 ## ACRONYM GLOSSARY | $\Delta \mathbf{V}$ | Change of Velocity | ELM | Earth Launch Mass | |---------------------|--|---------------------|--| | A&R | Automation and Robotics | ELV | Expendable Launch Vehicle | | ABL. | Anthropometry and Biomechanics Laboratory | EMPA | Electron Microprobe Analysis | | AC | Alternating Current | EMT | Electromagntic Translator | | ACC | Aft Cargo Carrier | EMU | Extravehicular Mobility Unit | | ACS | Attitude Control Subsystem | EOI | Earth Orbit Insertion | | AEC | Atomic Energy Commision | EPS | Electrical Power System | | AI | Attitude Indicator | ESECOM | Committee on Environmental, Safety, and Economic Aspects | | AL | Action Limit | ETO | of Magnetic Fusion Energy Earth-to-Orbit | | ALSE | Autolander Active Lunar Seismic Experiment | ETR | Engineering Test Reactor | | ALSEP | Apollo Lunar Surface Experiment Package | ETS | Extraterrestrial Station | | ALSPE | Anomalously Large Solar Proton Event | ETV | Earth Transfer Vehicle | | AMCD | Annular Momentum Control Device | EVA | Extravehicular Activity | | AOL | Airborne Oceanographic Lidar | FBR | Fluidized Bed Reactor | | AP | Agricultural Plant | FDIR | Fault Detection, Identification, and Reconfiguration | | APP | Astrofuel Production plant | FMEA | Failure Mode and Effects Analysis | | APS | Ascent Propulsion System | FMECA | Failure Mode and Effects Criticality Analysis | | APSA | Advanced Photovoltaic Solar Array | FMR | Ferromagnetic Resonance | | APT | Antarctic Planetary Testbed | FTA | Fault Tree Analysis | | ARC | Ames Research Center | GCTCA | Ground Control Television Cameras Assembly | | ARCO | Atlantic Richfield Company | GEO | Geosynchronous Earth Orbit | | ASD | Advanced Solar Dynamic | GN&C | Guidance, Navigation, and Control | | ASE | Advanced Space Engine | HDAB | Hexadecyl Trimethyl Ammonium Bromide | | ASO | Active Solar Optics | HI | Heading Indicator | | ASPS | Adaptable Space Propulsion System | HID | High Intensity Discharge | | ASTM | American Society for Testing Materials | HILV | Heavy Lift Launch Vehicle | | BMC | Bone Mineral Content | HIV | Heavy Lift Vehicle | | BPC | Biomass Production Chamber | HM
IF | Habitation Module | | C&D
C&T | Control and Display | IF
IIP | Intermediate Frequency Imaging Impact Probe | | CCGE | Communications and Tracking Cold Cathode Gauge Experiment | IMF | Initial Mass Function | | CDS | Command and Data Subsystem | IMU | Inertial Measurement Unit | | CEC | Cation Exchange Capacity | IOC | Initial Operational Capabilty | | CELSS | Controlled Ecological Life Support System | .00 | Initial Operating Capacity | | CER | Cost Estimating Relationship | IR | Infrared | | CETF | Critical Evaluation Task Force | IRAS | Infrared Astronomy Satellite | | CL | Crew Lander | IRR | Internal Rate of Return | | CLAS | Crew Lander-Ascent Stage | I _s /FeO | FMR intensity normalized to total iron content (soil | | CLDS | Crew Lander-Descent Stage | | maturity index) | | CLEFT | Cleaved Lateral Epitaxy for Film Transfer | ISA | Inertial Sensor Assembly | | CLP | Closed Loop Processing | I_{sp} | Specific Impulse | | CLSI | Civil Space Leadership Initiative | ISY | International Space Year | | CM | Center of Mass | IVA | Intravehicular Activity | | CMC | Command Module | IWWMS | Integrated Waste and Water Management System | | CMG | Control Moment Gyro | JPL. | Jet Propulsion Laboratory | | CNDB | Civil Needs Data Base | JSC | Johnson Space Center Potentiam Reac Forth Florents and Phoenhams | | COBE | Cosmic Background Explorer | KREEP
KSC | Potassium, Rare-Earth Elements, and Phosphorus
Kennedy Space Center | | CPLEE | Cost of Energy Charged Particle Lunar Environment Experiment | LACE | Lunar Atmosphere Composition Experiment | | CPS | Capillary Plant Support | LaRC | Langley Research Center | | CSAR | Coherent Synthetic Aperture Radar | LCRU | Lunar Communications Relay Unit | | CSM | Command Service Module | IDC | Less Developed Country | | CSTI | Civil Space Technology Initiative | LDEF | Long Duration Exposure Facility | | | Civilian Space Technology Initiative | LEO | Low Earth Orbit | | D | Deuterium | LeRC | Lewis Research Center | | DC | Direct Current | LGO | Lunar Geoscience Orbiter | | DCE | Drive Control Electronics | LH ₂ | Liquid Hydrogen | | DDT&E | Design, Development, Testing, and Evaluation | LIPO | Lunar Imaging Polar Orbiter | | DG | Directional Gyro | шо | Low Lunar Orbit | | DKC | Design Knowledge Capture | LLOX | Lunar Liquid Oxygen | | DMS | Data Management System | LM | Lunar Module (also LEM) | | DOF | Degrees of Freedom | LMDE | Lunar Module Descent Engine | | DPS | Descent Propulsion System Emergency Corp. Cooling Systems | IO | Lunar Orbiter | | ECCS | Emergency Core Cooling Systems | IOI | Lunar Orthophotomap | | ECCV | Earth Crew Capture Vehicle Environmental Control and Life Support | LOI
LOLA | Lunar Observer Lacer Altimeter | | ECLS
ECLSS | Environmental Control and Life Support Environmental Control and Life Support System | LOP | Lunar Observer Laser Altimeter Lunar Orbital Prospector | | ECLSS | Embedded Data Processor | | Local Transporation Vehicle | | EDS | Earth Departure Stage | LOX | Liquid Oxygen | | EDX | Energy Dispersive X-Ray | LRU | Line Replacable Unit | | EEO | Elliptical Earth Orbit | LRV | Lunar Roving Vehicle | | | Eccentric Earth Orbit | LSA | Level of Safety Assurance | | | | | | | LSE | Lunar Sounder Experiment | RIG | Radioisotope Thermoelectric Generator | |------------|---|--------------|--| | LT | Low Titanium | RLG | Ring Laser Gyro | | LTO | Lunar Topographic Orthophotomap | RMP | Regolith Mining Plant | | LULOX | Lunar Liquid Oxygen | RMS | Root-Mean Square | | LUO | Lunar Orbit | RO | Relay Orbiter | | LVDT | Linear Variable Differential Transformer | 701 | Reverse Osmosis | | LVLH | Local Vertical/Local Horizontal | ROM | Read-Only Memory | | MACS | Modular Attitude Control System | RRS | Remote Raman Spectrometer | | MCC | Mission Control Center | RSM
RTG | Radar Subsurface Mapper | | MDM
MEB | Multiplexer/Demultiplexer Main Electronics Box | RTM | Radioisotope Thermoelectric Generator | | MERI | Moon-Earth Radio Interferometer | SAB | Resource Transportation Module
Spacecraft Analysis Branch | | MFV | Moon Flight Vehicle | SCS | Supplemental Cooling Cart | | MHD | Magnetohydrodynamic | SCUBA | Self-Contained Underwater Breathing Apparatus | | MLI | Multilayer Insulation | SD | Single Domain | | MMH | Monomethyl Hydrazine | | Solar Dynamic (Generator) | | MOI | Mars Orbit Insertion | SDF | System Development Facility | | MOSAP | Mobile Surface Applications | SDP | Standard Data Processor | | MPD | Magnetoplasmadynamic | SEM | Scanning Electron Microscope | | MPR | Mean Payback Ratio | SHA | System Hazard Analysis | | MPS | Maximum Permissible Limit | SI | Speed Indicator | | MSFC | Marshall Space Flight Center | SIDE | Suprathermal Ion Detector Experiment | | MSIF | Multiple System Integration Facility | SLAP | Shuttle Laser Altimeter Prototype | | MTV | Mars Transfer Vehicle | SM | Service Module | | NAS | National Academy of Sciences | SMRM | Solar Maximum Recovery Mission | | NASA | National Aeronautics and Space Administration | SINR | Signal-to-Noise Ratio | | NCOS | National Commission on Space | SO | Solar Optics | | NEP | Nuclear-Electric Propulsion | SPF | Software Production Facility | | NET
NI | New European Torus | SPS
SPU | Service Propulsion System Signal Processing Unit | | NIOSH | Navigational Impactor National Institute of Occupational Safety and Health | SSE | Signal Processing Unit Software Support Environment | | NSF | National Science Foundation | SSHA | Subsystem Hazard Analysis | | NSO | Nuclear-Safe Orbit | SSME | Space Shuttle Main Engine | | OAET | Office of Aeronautics, Exploration, and Technology | STP | Standard Temperature and Pressure | | OAST | Office of Aeronautics and Space Technology | STS | Space Transportation System | | OMA | Operations Management Application | SW 'S | Solar Wind Spectrometer | | OMGA | Operations Management Ground Application | T | Tritium | | OMS | Operations Management System | TCS | Thermal Control System | | | Orbital Maneuvering System | TDRSS | Transmission and Data Relay Satellite System | | OMV | Orbital Maneuvering Vehicle | TE | Thermoelectric | | OPP | Oxygen Production Plant | TEA | Torque Equilibrium Angle | | OPWC | Oxygen Plasma Waste Conversion | TEI | Trans-Earth Injection | | OSHA | Operating and Support Hazard Analysis | TEM | Transmission Electron Microscope | | OFFICE . | Occupational Safety and Health Administration | TIC | Time Interval Counter | | OTSF | Orbiting (Orbital) Transfer (Transportation) and Staging | TIMES | Thermoelectric Integrated Membrane Evaporation System | | OTT | Facility Orbital Transfer Valida | TLI
TLP | Translunar Injection | | OTV
PAR | Orbital Transfer Vehicle Photosynthetic Active Radiation | TMI | Transient Lunar Phenomenon Trans-Mars Injection | | PEC | Photoelectrochemical | TOC | Total Organic Carbon | | PHA | Preliminary Hazard Analysis | TTV | Tether Tip Vehicle | | PHM | Planetary Habitation Module | TV | Television | | PIDDP | Planetary Instrument and Definition and | |
Thrust Vector | | | Development Program | TVS | Thermodynamic Vent System | | PLC | Programmable Logic Controller | UF | Ultrafiltration | | PLG | Prism Light Guide | UV | Ultraviolet | | PLSS | Portable Life Support System | V&V | Validation and Verification | | PMAD | Power Management and Distribution | VAT | Vehicle Assembly Tent | | PP | Power Plant | VAX | Virtual Address Extension | | PPF | Photosynthetic Photon Flux | VCD | Vapor Compression Distillation | | PPU | Power Processing Unit | VCS | Vapor Cycle System | | PRF | Pulse Repetition Frequency | VCDE | Vapor-Cooled Shield | | PRV | Propellant Refill Vehicle | VGRF
VHK | Variable Gravity Research Facility | | PSO
PTF | Passive Solar Optics Propellant Tank Farm | VHT | Very High Potassium
Very High Titanium | | PV | Photovoltaic | VIMS | Visible/Infrared Mapping Spectrometer | | 1 7 | Pioneer Venus | VIS | Visible | | PVC | Polyvinyl Chloride | VI.A | Very Large Array | | PWM | Pulse Width Modulator | VLBI | Very Long Baseline Interferometry | | PZ | Piezoelectric | VLF | Very Low Frequency | | R&D | Research and Development | VLFA | Very Low Frequency Array | | RCS | Reaction Control System | VLT | Very Low Titanium | | REE | Rare-Earth Elements | VMS | VAX Monitoring System | | RF | Radio Frequency | | Velocity Measurement System | | RFC | Regenerative Fuel Cell | VPCAR | Vapor Phase Catalytic Ammonia Removal System | | RFP | Request for Proposal | WDR | Waste Disposal Rating | | RI | Range Indicator | | | | | | | |